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Abstract. In [19] J.J. Ye and D.L. Zhu proposed a new reformulation of a

bilevel programming problem which compounds the value function and KKT

approaches. In [19] partial calmness condition was also adapted to this new re-

formulation and optimality conditions using partial calmness were introduced.

In this paper we investigate above all local equivalence of the combined refor-

mulation and the initial problem and how constraint qualifications and opti-

mality conditions could be defined for this reformulation without using partial

calmness.

Since the optimal value function is in general nondifferentiable and KKT con-

straints have MPEC-structure, the combined reformulation is a nonsmooth

MPEC. This special structure allows us to adapt some constraint qualifications

and necessary optimality conditions from MPEC theory using disjunctive form

of the combined reformulation. An example shows, that some of the proposed

constraint qualifications can be fulfilled.

Keywords: bilevel programming, value function reformulation, KKT refor-

mulation, constraint qualifications, optimality conditions.

1. Introduction

Bilevel programming problem is a hierarchical optimization problem, which was
introduced in 1973 by Bracken and McGill and nowadays is being intensively re-
searched (see [4, 2, 19] and references therein). This problem consists of the upper
level problem, whose feasible set contains optimal solutions of the parametric pro-
gramming problem in the lower level. There are two approaches to deal with this
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problem, which is in general a set valued optimization problem: pessimistic and
optimistic approach. The problem considered in this paper is related to the opti-
mistic bilevel programming problem, because they have the same global solutions
and the relationship between local solutions could also be stated under additional
assumptions (see [5]). The following problem will be considered:

F (x, y) −→ min
x,y

(1)

G(x, y) ≤ 0,

y ∈ Ψ(x),

where F : Rn × R
m → R, G : Rn × R

m → R
k and

Ψ(x) = argmin
y

{f(x, y) : g(x, y) ≤ 0} ,

with f : Rn × R
m → R, g : Rn × R

m → R
p. We assume in this paper that the

functions F, G, f, and g are in general nonlinear, twice differentiable.

In order to deal with this problem it is common to reformulate it into a one level
optimization problem. There are two most popular ways to do this. We can apply
the optimal value function of the lower level problem

V (x) = inf
y
{f(x, y) : g(x, y) ≤ 0} (2)

and, using the following restriction in the upper level

f(x, y)− V (x) ≤ 0, (3)

together with the feasibility condition of the lower level problem (g(x, y) ≤ 0), the
lower level problem can be replaced. Another possibility is to consider the KKT
optimality conditions of the lower level problem

∇yf(x, y) +

p
∑

i=1

λi∇ygi(x, y) = 0, (4)

g(x, y) ≤ 0,

λ ≥ 0,

λ⊤g(x, y) = 0,

instead of the lower level problem.

The second approach is mostly used for the bilevel programming problems with
convex lower level problem, since then the KKT conditions are not only necessary but
also sufficient for the lower level. However, the local solutions of KKT reformulation
do not have to be local minimal with respect to the initial bilevel programming
problem even if the lower level problem is convex (see [6]). For a nonconvex lower
level problem global solutions of KKT reformulation do not need to coincide with
solutions of the bilevel problem. In [19] Ye and Zhu proposed a new reformulation of
a bilevel programming problem, which combines both described approaches. Using
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this combined reformulation we can transform the problem (1) as follows:

F (x, y) −→ min
x,y,λ

(5)

G(x, y) ≤ 0,

f(x, y)− V (x) ≤ 0,

∇yf(x, y) +

p
∑

i=1

λi∇ygi(x, y) = 0,

g(x, y) ≤ 0,

λ ≥ 0,

λ⊤g(x, y) = 0,

where F : Rn×R
m → R, G : Rn×R

m → R
k, f : Rn×R

m → R, g : Rn×R
m → R

p.
It is obvious, that if the lower level problem is convex and consequently the KKT

optimality conditions are sufficient, then one part of the restrictions of this problem
(restrictions (4) or (3)) is redundant. All constraints are only useful if the lower
level problem is not convex, because in this case they all can restrict the feasible set
of the upper level problem.

The optimal value function V (x) is assumed to be local Lipschitz continuous,
what can be fulfilled under not too strong assumptions on the lower level problem
(see [4, 12]).

Because of the last assumption we use several tools, which approximate local
Lipschitz continuous function in a neighbourhood of a considered point. These
include Clarke directional derivative:

f◦(x, d) = lim sup
x′→x, λ→0+

f(x′ + λd)− f(x′)

λ
, (6)

where x′, x, d ∈ R
n, λ ∈ R, Michel–Penot directional derivative:

f⋄(x, d) = sup
z∈Rn

lim sup
λ→0+

f(x+ λd+ λz)− f(x+ λz)

λ
, (7)

where z, x, d ∈ R
n, λ ∈ R and Dini directional derivative:

f↑(x, d) = lim sup
λ→0+

f(x+ λd) − f(x)

λ
, (8)

where x, d ∈ R
n, λ ∈ R.

Using the directional derivatives (6) and (7) it is possible to define Clarke (9)
and Michel–Penot subdifferential (10):

∂Cf(x) = {ξ ∈ R
n : f◦(x, d) ≥ 〈ξ, d〉 for all d ∈ R

n} , (9)

∂⋄f(x) = {ξ ∈ R
n : f⋄(x, d) ≥ 〈ξ, d〉 for all d ∈ R

n} . (10)

For Lipschitz continuous functions the following relationships between the intro-
duced tools can be stated:

f⋄(x, d) ≤ f◦(x, d), (11)
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∂⋄f ⊆ ∂Cf.

For that reason optimality conditions using Michel–Penot subdifferential are
more restrictive than the same conditions with Clarke subdifferential.

For the function G : Rn → R the gradient ∇G(x) is a column vector. If the
function is defined as follows: G : R

n → R
p, then ∇G(x) ∈ R

p×n denotes its
Jacobian.

In the second section we consider some important properties of the combined
reformulation, which include above all equivalence between the problem (1) and the
combined reformulation (5) as equivalence of the local and global solutions.

Section 3 involves consideration of the combined reformulation as a nonsmooth
mathematical program with equilibrium constraints (MPEC) including definition of
some regularity conditions and stationarity conditions. An example demonstrates
satisfiability of these conditions.

In order to show the desired effects as clear as possible, we use simple examples
involving mostly linear constraints. More general examples can be found, but the
calculations are usually much more difficult.

2. Properties of the combined reformulation

One of the most important questions is whether the optimal solutions of the com-
bined reformulation and the solutions of the initial bilevel programming problem are
equivalent. This question will now be considered concerning separately global and
local solutions of both optimization problems (cf. [19]).

Theorem 1. Assume that (x̄, ȳ) is a global solution of bilevel programming prob-
lem (1) and the KKT conditions hold for the lower level problem at (x̄, ȳ). Then the
point (x̄, ȳ, λ̄) is a global optimal solution of the combined reformulation (5) for every
λ̄ ∈ R

p, λ̄ ∈ Λ(x̄, ȳ), where

Λ(x̄, ȳ) =

{

λ ≥ 0 : ∇yf(x̄, ȳ) +

p
∑

i=1

λi∇ygi(x̄, ȳ) = 0, λ⊤g(x̄, ȳ) = 0, g(x̄, ȳ) ≤ 0

}

.

Conversely, let (x̄, ȳ, λ̄) be a global solution of the combined reformulation (5) and the
KKT conditions hold for the lower level problem at all points (x, y) with y ∈ Ψ(x),
then the point (x̄, ȳ) is a global solution of the bilevel programming problem (1).

The proof is analogous to proof in [19].

In order to formulate a theorem regarding local solutions of problems (1) and (5)
we need some additional assumptions. Definition of the term “local solution” has
also a great meaning. Let us consider the following example:
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Example 1. The bilevel programming problem is defined as follows:

F (x, y) = y2 − x → min
x,y

y = (y1, y2)
⊤ ∈ Ψ(x),

with Ψ(x) = argmin
y

{−y31 : x(y1 − 1)− y2 ≤ 0, x(y1 − 1)+ y2 ≤ 0, y1 −x− 1 ≤ 0}.

We can observe, that for x < 0 the feasible set of the lower level problem is empty,
therefore we restrict our consideration to the case when x ≥ 0. Regarding x ≥ 0 we
can observe, that the optimal solution of the lower level problem is a KKT point
ȳ⊤ = (1, 0) and for this reason if x → ∞, (x̄, ȳ) is always feasible for the bilevel
programming problem, but F (x̄, ȳ) → −∞, i.e. there exist neither global nor local
solution of this problem.

Let us now consider the combined reformulation of this problem. Because of the
fact, that for every solution of the lower level problem we have ȳ1 = 1, it follows,
that V (x) = −1 (for x ≥ 0). The new reformulation has the following form:

F (x, y) = y2 − x → min
x,y,λ

−y31 + 1 ≤ 0,
(

−3y21
0

)

+ λ1

(

x
−1

)

+ λ2

(

x
1

)

+ λ3

(

1
0

)

= 0,

x(y1 − 1)− y2 ≤ 0,

x(y1 − 1) + y2 ≤ 0,

y1 − x− 1 ≤ 0,

λ1(x(y1 − 1)− y2) = 0,

λ2(x(y1 − 1) + y2) = 0,

λ3(y1 − x− 1) = 0,

λ1, λ2, λ3 ≥ 0.

This problem has the following feasible set:

M(x) =

{(

x, 1, 0,
3

2x
,
3

2x
, 0

)

for x > 0, (0, 1, 0, λ1, λ1, 3) with λ1 ≥ 0

}

.

We can notice, that the constraint −y31 + 1 ≤ 0 is not redundant and restricts the
feasible set of the reformulation.

For this problem we have also no global solution, but if we consider a neighbour-
hood of the point (x̄, ȳ, λ̄) = (0, 1, 0, λ1, λ1, 3) i.e. B 1

2

(x̄, ȳ, λ̄) (B 1

2

(z) denotes the

ball of radius 1
2 and centre at the point z̄), than due to complementarity conditions

we have y1 = x + 1, which is satisfied only if x = 0, so the point (x̄, ȳ, λ̄) is a local
solution of the combined reformulation. On the other hand if we define a neighbour-
hood of (x̄, ȳ, λ̄) as Bδ(0, 1, 0)× R

3, then we cannot find any δ such that (x̄, ȳ, λ̄) is
local optimal for the combined reformulation.

In the next theorem we consider locality of solutions only with respect to the
variables x and y:
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Theorem 2. [19] Let (x̄, ȳ) be a local solution of the problem (1). Suppose, that
the KKT conditions hold for the lower level problem at (x̄, ȳ). Then there exists
λ̄ ∈ Λ(x̄, ȳ) such that (x̄, ȳ, λ̄) is a local solution of the combined reformulation
(5). Conversely, let (x̄, ȳ, λ̄) be a solution to the combined reformulation (5) in the
neighbourhood U(x̄, ȳ)×R

p and the KKT conditions hold for the lower level problem
at all points (x, y) ∈ U(x̄, ȳ) with y ∈ Ψ(x), then the point (x̄, ȳ) is a local solution
of the bilevel programming problem (1).

We can notice, that in the converse statement of the Theorem 2 a global solution
of the combined reformulation in the neighbourhood of the point (x̄, ȳ, λ̄) defined as
U(x̄, ȳ) × R

p is considered. Compared with common notion of the local solution of
a programming problem, the neighbourhood of the point (x̄, ȳ, λ̄) is not restricted
with respect to all variables.

It is also worth to note that the set of KKT multipliers Λ(x, y) in Example 1 is not
upper semicontinuous in sense of Berge [1]. For x → 0+ it follows λ1, λ2 → ∞, λ3 = 0
but at x = 0 we have λ1, λ2 ∈ R+, λ1 = λ2, λ3 = 3. That is the reason why the
local optimal solutions of the combined reformulation with respect to x, y and λ do
not coincide with local solutions of the initial bilevel programming problem.

If we assume that a Mangasarian Fromowitz Constraint Qualification (MFCQ)
is satisfied at the local solution of the lower level problem we know, that the set
of KKT multipliers is compact for all points in a neighbourhood of (x̄, ȳ) and that
Λ(x, y) is upper semicontinuous [15]. (Notice, that in Example 1 MFCQ does not
hold only at the point (0,1,0).) But even if MFCQ is satisfied for the lower level
problem at the considered point, we still need some additional assumptions for the
local solutions of the bilevel programming problem and the local solutions of the
combined reformulation (with respect to all variables including λ) to be equivalent.
In this case in order to know wether this local solutions coincide, we have to examine
if (x̄, ȳ, λ̄) is local optimal for the combined reformulation for all λ ∈ Λ(x̄, ȳ). The
following result has been adapted from [6].

Proposition 1. Assume that MFCQ is satisfied for the lower level problem
at the point (x̄, ȳ) and let (x̄, ȳ, λ̄) be a local solution of the problem (5) for all
λ̄ ∈ Λ(x̄, ȳ). Then the point (x̄, ȳ) is local optimal for the bilevel programming prob-
lem (1).

The proof is analogous to the proof in [6], we only need to use MFCQ instead
of the Slater Constraint Qualification due to lack of convexity of the lower level
problem.

Obviously it follows from the the Proposition 1, that not every local solution
of the combined reformulation is also local optimal for the bilevel programming
problem.

The following example (see [6] slightly modified) illustrates the Proposition 1.
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Example 2. Consider following (nonconvex) lower level problem:

−y3 −→ min
y

x+ y ≤ 1,

−x+ y ≤ 1.

It can be easily noticed, that the optimal solution of this problem, depending on
x, can be stated as follows:

y(x) =

{

x+ 1 for x ≤ 0,

−x+ 1 for x ≥ 0.

We can also determine the set of KKT multipliers for each KKT point:

Λ(x, y) =



















{

(3y2, 0)
}

; if x > 0, y = −x+ 1
{

(0, 3y2)
}

; if x < 0, y = x+ 1

{(0, 0)} ; if x ∈ (−1, 1), y = 0

conv {(3, 0), (0, 3)} ; falls x = 0, y = 1.

The bilevel programming problem has the following form:

(x− 1)2 + (y − 1)2 −→ min
x,y

y ∈ Ψ(x).

This optimization problem has a global optimal solution at the point (x̄, ȳ) =
(0.5, 0.5) and no local solutions.

Let us now consider the combined reformulation (5) of this problem with optimal
value function V (x) = −y(x)3:

(x− 1)2 + (y − 1)2 → min
x,y,λ

−y3 + (y(x))3 ≤ 0,

−3y2 + λ1 + λ2 = 0,

x+ y ≤ 1,

−x+ y ≤ 1,

λi ≥ 0, i = {1, 2} ,

λ1(x+ y − 1) + λ2(−x+ y − 1) = 0.

In this case there exist not only one global solution (x̄, ȳ, λ̄) = (0.5, 0.5, (0.75, 0))

but also a local solution at the point (x̂, ŷ, λ̂) = (0, 1, (0, 3)). This can be noticed if we

choose an appropriate neighbourhood of the point (x̂, ŷ, λ̂) with λ2 > 0, for example
U = B1(0, 1, (0, 3)). This implies, that for all feasible points in this neighbourhood
due to complementarity condition the second restriction of the lower level problem
need to be active. For that reason we cannot find in this neighbourhood any feasible
point (x, y, λ) with F (x, y) < F (x̂, ŷ).
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Of course it is difficult to check if one point is local optimal for a combined
reformulation for every λ ∈ Λ(x̄, ȳ). It is even possible to find an example (cf. [6] with

convex lower level problem) such that for only one KKT multiplier λ̂ ∈ intΛ(x̄, ȳ) the

point (x̄, ȳ, λ̂) is not local optimal for the combined reformulation. Hence it is also
not a local solution of the initial bilevel problem. For that reason it is important
to consider, wether it is possible to restrict the set of regarded KKT multipliers
under appropriate assumptions. Some regularity conditions such as Constant Rank
Constraint Qualification (CRCQ) (cf. [9]) are helpful in order to achieve a better
result. We can state the following conclusion similar to the result from [6].

Corollary 1. Assume that at the point (x̄, ȳ), ȳ ∈ Ψ(x̄) both MFCQ and CRCQ
are satisfied for the lower level problem. Moreover, let (x̄, ȳ, λ̄) be a local solution
of the combined reformulation (5) for all vertices λ̄ of the set of KKT multipliers
Λ(x̄, ȳ). Then the point (x̄, ȳ) is a local solution of the bilevel programming problem.

If we consider Example 2, then we can state, that both MFCQ an CRCQ are
satisfied at the point (0, 1) for the lower level problem and that is why we need only
to check if two points (0, 1, (0, 3)) and (0, 1, (3, 0)) are local solutions of the combined
reformulation. We can easily state, that the point (0, 1, (3, 0)) is not local optimal
for the new reformulation and consequently it is also not local solution of the initial
bilevel programming problem.

3. Combined reformulation as a nonsmooth MPEC

After equivalence considerations we now need to find out which constraint qualifi-
cations can be satisfied for this problem and how to define the necessary optimality
conditions.

Since combined reformulation has a structure of a nonsmooth MPEC (see Section
1) it is possible to apply results from Movahedian and Nobakhtian [13] to obtain
some regularity and stationarity conditions.

At first we define the combined reformulation in disjunctive form (cf. [13,8]):

F (x, y) → min
x,y,λ

(12)

H(x, y, λ) ∈ Γ,

where all restrictions are aggregated to one function:

H(x, y, λ) :=

(

GIG(x, y), f(x, y)− V (x),∇yf(x, y) +

p
∑

i=1

λi∇ygi(x, y),

−gα(x, y), λα,−gβ(x, y), λβ ,−gγ(x, y), λγ

)

, (13)
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where
IG := IG(x̄, ȳ) := {i = 1, ..., k : Gi(x̄, ȳ) = 0}

and the right hand side of the constraints is defined as follows:

Γ :=
⋃

(β1,β2)∈P(β)

Γβ1,β2
. (14)

In order to define the complementarity constraint λ⊤g(x, y) = 0 we need to
introduce the following index sets:

α := α(x̄, ȳ, λ̄) :=
{

i : gi(x̄, ȳ) = 0, λ̄i > 0
}

,

β := β(x̄, ȳ, λ̄) :=
{

i : gi(x̄, ȳ) = 0, λ̄i = 0
}

, (15)

γ := γ(x̄, ȳ, λ̄) :=
{

i : −gi(x̄, ȳ) > 0, λ̄i = 0
}

.

The index set β, for which both gi(x, y) as well as λi are active, can be divided
into two partitions in many various ways. The set of all partitions of β is defined as
follows:

P(β) := {(β1, β2) : β1 ∪ β2 = β, β1 ∩ β2 = ∅} . (16)

With the aid of this set we can define the convex polyhedra:

Γβ1,β2
:= R

|IG|

− × R− × 0m × 0|α| × R
|α|
+ ×∆β1,β2

×∆β2,β1
× R

|γ|
+ × 0|γ|, (17)

where |A| denotes the cardinality of the set A and

(∆µ,ν)j :=

{

0 : j ∈ µ,

R+ : j ∈ ν.
(18)

Notice that this disjunctive problem depends on vector (x̄, ȳ, λ̄) and hence it is
equivalent to the combined reformulation (i.e. the feasible sets of these two problems
are equal) in a neighbourhood of the considered point (x̄, ȳ, λ̄).

There are several constraint qualifications like LICQ or MFCQ, that were adapted
for MPEC (cf. [7]): MPEC-LICQ, MPEC-SMFCQ, piecewise MPEC-MFCQ. The
latter one is also the weakest of this group of regularity conditions. For this reason
we define this condition for a nonsmooth MPEC (see [10]):

Definition 1. Consider the following optimization problem:

f(z) −→ min
z

(19)

Gi(z) = 0, i ∈ α, Hi(z) = 0 i ∈ γ,

Gi(z) ≥ 0, Hi(z) = 0 i ∈ β1,

Gi(z) = 0, Hi(z) ≥ 0 i ∈ β2,

g(z) ≤ 0, h(z) = 0.

where f, g,G,H are local Lipschitz continuous. The piecewise MPEC-NMFCQ holds
at the feasible point z̄ if NMFCQ is satisfied at this point for every partition (β1, β2) ∈
P(β).



74

NMFCQ as a nonsmooth version of MFCQ can be found in [4].
It turns out, that not only constraint qualifications like nonsmooth LICQ or

MFCQ cannot be satisfied for the combined reformulation [19], but also the nons-
mooth MPEC counterparts of this conditions fail to be fulfilled at any feasible point
of (5). This effect was noticed simultaneously by Ye in [17].

To establish this result we need the well known property of MFCQ, which holds
also for NMFCQ:

Lemma 1. [18] Let x be a feasible point of the following problem:

f −→ min
x

(20)

g(x) ≤ 0,

h(x) = 0,

with f : Rn → R, g : Rn → R
p, h : Rn → R

q local Lipschitz continuous. Then
NMFCQ is satisfied at this point if and only if the set of abnormal multipliers
Λ0(x) = {0}, with

Λ0(x) =
{

(λ, µ) ∈ R
p
+ × R

q : 0 ∈ ∂Cg(x)
⊤λ+ ∂Ch(x)

⊤µ, λ⊤g(x) = 0
}

. (21)

Theorem 3. [14] Let (x̄, ȳ, λ̄) be a feasible point of the optimization problem (5),
then for every partition of the index set β there exists a nonzero abnormal multiplier.

This result can be shown using the idea, that having a feasible point of the
combined reformulation (x̄, ȳ, λ̄), the optimal solution of the following optimization
problem:

f(x, y)− V (x) −→ min
x,y

g(x, y) ≤ 0

is the point (x̄, ȳ). Taking now the Fritz–John multipliers for this problem, we can
easily find abnormal multipliers for the combined reformulation (see also [14,19]).
Consequently it can be stated, that the piecewise MPEC-NMFCQ cannot be satisfied
because of the restriction including the optimal value function.

As this regularity condition fail to be satisfied at any feasible point of the com-
bined reformulation, it is important to check if some weaker regularity conditions can
be satisfied for this problem. The next definition involves some regularity conditions
adapted from [13], that are one of the weakest for the general nonlinear optimiza-
tion problems: Abadie and Guignard Constraint Qualifications. These conditions
are defined with the aid of the following cones, which are adapted for the disjunctive
problem (cf. [16,11,13]):

• Tangent cone (Bouligand cone):

TB((x̄, ȳ, λ̄), H
−1(Γ)) =

{

d ∈ R
n+m+p : ∃ tk ↓ 0, ∃dk → d with

∀k : (x̄, ȳ, λ̄) + tkd
k ∈ H−1(Γ)

}

,
(22)
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• Linearized tangent cone:

T lin
MPEC(x̄, ȳ, λ̄) :=

{

(d, v) ∈ R
n+m × R

p : ∇GIG (x̄, ȳ)d ≤ 0, (23)

∇f(x̄, ȳ)⊤d− V ↑(x̄; dx) ≤ 0,

∇(∇yf +

p
∑

i=1

λi∇ygi)(x̄, ȳ)d+∇yg(x̄, ȳ)
⊤v = 0,

∇gα(x̄, ȳ)d = 0,

vγ = 0,

(−∇gβ(x̄, ȳ)d, vβ) ∈ C} ,

with C defined as follows:

C :=
{

(a, b) ∈ R
2|β| : a ≥ 0, b ≥ 0, a⊤b = 0

}

(24)

and ∇h(x, y) :=

(

∇xh(x, y)
∇yh(x, y)

)

,

• Fréchet normal cone:

NF ((x̄, ȳ, λ̄), H
−1(Γ)) =

{

d ∈ R
n+m+p :

〈

d, (x, y, λ) − (x̄, ȳ, λ̄)
〉

≤ 0 (25)

∀(x, y, λ) ∈ TB((x̄, ȳ, λ̄), H
−1(Γ))

}

.

Definition 2. Let (x̄, ȳ, λ̄) be a feasible solution of the problem (5).

(i) The nonsmooth Abadie Constraint Qualification for MPEC (MPEC-NACQ) is
satisfied at the point (x̄, ȳ, λ̄) if the following condition holds:

TB((x̄, ȳ, λ̄), H
−1(Γ)) = T lin

MPEC(x̄, ȳ, λ̄),

with H and Γ defined in (13) and (14) and if there exists K > 0 such that for
every d ∈ R

n+m+p it follows:

ρT lin
MPEC(x̄,ȳ,λ̄)(d) ≤ K

(

‖max {0, (∇GIG(x̄, ȳ))d}‖
2

+
∥

∥max
{

0, (∇f(x̄, ȳ))⊤d− V ↑(x̄; dx)
}∥

∥

2

+

∥

∥

∥

∥

∥

∇(∇yf +

p
∑

i=1

λi∇ygi)(x̄, ȳ, λ̄)d

∥

∥

∥

∥

∥

2

+ ‖∇gα(x̄, ȳ)d‖
2

+
∥

∥dλγ

∥

∥

2
+ (ρC(−∇gβ(x̄, ȳ)d, dλβ

))2
)

1

2

, (26)

where ρA(x) = inf {‖x− a‖ : a ∈ A} denotes the distance function.

(ii) The nonsmooth Guignard Constraint Qualification for MPEC (MPEC-NGCQ)
is satisfied at the point (x̄, ȳ, λ̄) if it holds:

NF ((x̄, ȳ, λ̄), H
−1(Γ)) = (T lin

MPEC(x̄, ȳ, λ̄))
◦,
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(where C◦ denotes a polar cone to the cone C) and if there exists K > 0 such
that for every d ∈ R

n+m+p the inequality (26) is satisfied. Additionally the
following condition should be also satisfied:

∇F (x̄, ȳ)⊤d ≥ 0 ∀d ∈ conv TB((x̄, ȳ, λ̄), H
−1(Γ)). (27)

(iii) The weak Abadie Constraint Qualification for MPEC (MPEC-WACQ) is satis-
fied at the point (x̄, ȳ, λ̄), if there exists K1 > 0 such that for every d ∈ R

n+m+p

it follows:

0 ≤ ∇F (x̄, ȳ)⊤d+K1

(

‖max {0, (∇GIG(x̄, ȳ))d}‖
2

+
∥

∥max
{

0, (∇f(x̄, ȳ))⊤d− V ↑(x̄; dx)
}∥

∥

2

+

∥

∥

∥

∥

∥

∇(∇yf +

p
∑

i=1

λi∇ygi)(x̄, ȳ, λ̄)d

∥

∥

∥

∥

∥

2

+ ‖∇gα(x̄, ȳ)d‖
2

+
∥

∥dλγ

∥

∥

2
+ (ρC(−∇gβ(x̄, ȳ)d, dλβ

))2
)

1

2

.

Under these regularity conditions we can obtain the following stationarity con-
ditions, which were adapted from [13].

Definition 3. Assume that (x, y, λ) is a local solution of the combined reformu-
lation (5) and let the sets α, β, and γ be defined as in (15). Then the point (x, y, λ)
is:

1. MPEC M-stationary, if it holds:

0 ∈ ∇xF (x, y) +

k
∑

i=1

λG
i ∇xGi(x, y) + λV (∇xf(x, y)− ∂⋄V (x))

+

m
∑

i=1

λKKT
i ∇x(∇yi

f +

p
∑

j=1

λj∇yi
gj)(x, y) +

p
∑

i=1

λg
i∇xgi(x, y) (28)

0 = ∇yF (x, y) +

k
∑

i=1

λG
i ∇yGi(x, y) + λV ∇yf(x, y)

+

m
∑

i=1

λKKT
i ∇y(∇yi

f +

p
∑

j=1

λj∇yi
gj)(x, y) +

p
∑

i=1

λg
i∇ygi(x, y)

0 =

m
∑

i=1

λKKT
i ∇yi

g(x, y)− λλ, (29)

λG ≥ 0, G(x, y)⊤λG = 0, λV ≥ 0, λg
γ = 0, λλ

α = 0, (30)

(λg
i > 0 ∧ λλ

i > 0) ∨ λg
i λ

λ
i = 0, ∀i ∈ β, (31)

for (λG, λV , λKKT , λg, λλ) ∈ R
k × R× R

m × R
p × R

p.
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2. MPEC strong-stationary, if the conditions (28-30) are satisfied and addition-
ally

λg
i ≥ 0 ∧ λλ

i ≥ 0, ∀i ∈ β.

The weakest of the constraint qualifications from the Definition 2 is MPEC-
WACQ. The following theorem states the M-stationarity of a local optimal point
under fulfilment of MPEC-WACQ (cf. [13]).

Theorem 4. [14] Let (x̄, ȳ, λ̄) be a local solution of the combined reformulation
(5) and assume that the function H and the set Γ are defined as in (13) and (14).
If MPEC-WACQ holds at the point (x̄, ȳ, λ̄), then (x̄, ȳ, λ̄) is M-stationary.

The proof is analogous to proof in [13] (cf. [14]).
Following example shows, that MPEC-NACQ, MPEC-NGCQ and consequently

also MPEC-WACQ can be satisfied for the combined reformulation.

Example 3. Consider the bilevel optimization problem:

(x− 1)2 + (y − 1)2 → min
x,y

−xy ≤ 0,

y ∈ Ψ(x),

with Ψ(x) = argmin
y

{−y3 : x+ y ≤ 1,−x+ y ≤ −1}.

This problem has only one global optimal point (x̄, ȳ) = (1, 0) and a local solution
at the point (x̂, ŷ) = (0,−1).

We are now going to examine if MPEC-NACQ and MPEC-NGCQ are satisfied
at the global optimal point of the combined reformulation. Let us consider the
combined reformulation of this bilevel programming problem:

(x− 1)2 + (y − 1)2 → min
x,y,λ

−xy ≤ 0,

−y3 − V (x) ≤ 0,

−3y2 + λ1 + λ2 = 0,

−x+ y ≤ −1,

x+ y ≤ 1,

λ1, λ2 ≥ 0,

λ1(−x+ y + 1) = 0,

λ2(x+ y − 1) = 0,

with V (x) =

{

(x− 1)3, for x ≥ 1,

−(x− 1)3, for x ≤ 1.

Let us consider the point (x̄, ȳ, λ̄) = (1, 0, 0, 0). This point is a global solution of

this programming problem, the local solution is at the point (x̂, ŷ, λ̂) = (0,−1, 0, 3).
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Because of the fact, that the optimal solution is a separated point with respect
to all variables, the tangent cone consists only of a zero vector. Now we need to
determine the linearized cone by solving a system of linear inequalities and equalities
(23) with α = γ = ∅ and β = {1, 2}:

T lin
MPEC(x̄, ȳ, λ̄) =

{

(d1, d2, v1, v2) ∈ R
4 : −d2 ≤ 0,

v1 + v2 = 0,

d1 − d2 ≥ 0, v1 ≥ 0, v1(d1 − d2) = 0

−d1 − d2 ≥ 0, v2 ≥ 0, v2(−d1 − d2) = 0} =
{

(d1, d2, v1, v2) ∈ R
4 : d1 = d2 = v1 = v2 = 0

}

.

That means: TB((x̄, ȳ, λ̄), H
−1(Γ)) = T lin

MPEC(x̄, ȳ, λ̄).

Because of the fact, that in this example the optimal value function is differen-
tiable, we can state, that the condition (26) is satisfied (see [13] for more details).
Consequently MPEC-NACQ holds at the point (x̄, ȳ, λ̄).

If we consider MPEC-NGCQ we find out, that because of the definition of the
Fréchet normal cone (25) and due to the fact, that TB((x̄, ȳ, λ̄), H

−1(Γ)) = {0}, the
condition (27) is trivially satisfied and the condition MPEC-NGCQ holds also at the
considered point. Consequently MPEC-WACQ is also satisfied at (x̄, ȳ, λ̄).

Therefore we can state, that the point (x̄, ȳ, λ̄) is MPEC M-stationary with e.g.
the following KKT multipliers (λG, λV , λKKT , λg, λλ) = (0, 0, 0, 1, 1, 0, 0).

4. Conclusion

The combined reformulation is a convenient proposal how to deal with bilevel op-
timization problems if the lower level problem is not assumed to be convex. It is
possible to find some regularity conditions and to derive optimality conditions, that
can be satisfied for this nonsmooth MPEC. The obtained stationarity conditions
without using partial calmness are actually the same as with using this regularity
condition (cf. [19]). In the future it would be interesting to examine whether there
exists a relationship between partial calmness and MPEC-NACQ, MPEC-WACQ or
MPEC-NGCQ.
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