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A SEMANTICAL ANALYSIS OF CUT-FREE

CALCULI FOR MODAL LOGICS

A b s t r a c t. We analyze semantically the logical inference rules

in cut-free sequent calculi for the modal logics which are obtained

from the least normal logic K by adding axioms from T, 4, 5,

D and B. This implies Kripke completeness, as well as the cut-

elimination property or the subformula property of the calculi.

By slightly modifying the arguments, the finite model property of

the logics also follows.

The purpose of this paper is to analyze semantically the logical infer-

ence rules in cut-free sequent calculi for modal logics, aiming at a cut-free

or analytic version of Maehara [2], in which sequent calculi with cut are

concerned with. This constitutes another proof of Kripke completeness

as well as the cut-elimination property or the subformula property of the

calculi. By modifying the arguments a bit, the finite model property also

follows.
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We consider all the propositional modal logics which are obtained from

the least normal logic K by adding axiom schemata among the following:

T : �A ⊃ A. 4 : �A ⊃ ��A. 5 : ¬�A ⊃ �¬�A.
D : �A ⊃ ¬�¬A. B : ¬A ⊃ �¬�A.

There are 15 mutually distinct logics of them, which we divide into the

following four classes:

Class 1: K, KT, KD, K4, K4D, S4(=KT4).

Class 2: K45, K45D.

Class 3: KB, KTB, KDB, K4B, S5(=KT4B=KT5).

Class 4: K5, K5D.

Characterization of these logics by Kripke frame semantics is known

(Goré [1], for example).

It is a classical result that each logic in Class 1 has a sequent calculus

with the cut-elimination property (and so the subformula property). It is

proved both syntactically and semantically in Shvarts [3] that those logics

in Class 2, too, have sequent calculi with the cut-elimination property as

well as the subformula property. The logics in Class 3 have sequent calculi

with the subformula property but without the cut-elimination property

(Takano [4]). Lastly, those in Class 4 have sequent calculi with a modified

form of the subformula property but without the subformula property in

the original sense (Takano [5]).

After common preliminaries in Section 1, sequent calculi for the logics

in Classes 1–4 are dealt with in Sections 2–5, respectively.

The author hopes that our course of semantical analysis of inference

rules as well as extension of the notion of subformula is refined and applied

to other logics by the interested readers.

.1 Preliminaries

In this paper, only ¬ (negation), ⊃ (implication) and � (necessity) are

used as the logical symbols, and others are considered as abbreviations, for

simplicity. Propositional letters and formulas are denoted by p, q, r, . . . and

A,B,C, . . ., respectively. A �-formula is a formula whose outermost logical
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symbol is the necessity symbol �. A sequent is an expression of the form

Γ → Θ, where Γ and Θ are finite sequences of formulas.

Every sequent calculus which is taken up in this paper enjoys the fol-

lowing stipulation.

Stipulation 1. The sequent calculus has A → A as an initial sequent

for every A, and contains the following structural rules as inference rules.

(weakening)
Γ → Θ

A,Γ → Θ
,

Γ → Θ

Γ → Θ, A
.

(exchange)
∆, B,A,Γ → Θ

∆, A,B,Γ → Θ
,

Γ → Θ, B,A,Λ

Γ → Θ, A,B,Λ
.

(contraction)
A,A,Γ → Θ

A,Γ → Θ
,

Γ → Θ, A,A

Γ → Θ, A
.

So, for convenience, the antecedent Γ and the succedent Θ of the sequent

Γ → Θ are recognized as sets also. Finite sequences (as well as finite sets)

of formulas are denoted by Γ,Θ,∆,Λ, . . . . We mean by Sf(Γ) the set of all

the subformulas of some formulas in Γ, while by �Γ the set {�A | A ∈ Γ}.
It must be noticed that the inference rule (cut), which is described

below, is only admitted in some of our calculi with appropriate restriction:

(cut)
Γ → Θ, C C,∆ → Λ

Γ,∆ → Θ,Λ
.

Definition 1.1. Let GL be a sequent calculus. A sequent Γ → Θ is

analytically saturated in GL, iff the following properties hold.

(1.1-a) Γ → Θ is unprovable in GL.

(1.1-b) Suppose A ∈ Sf(Γ ∪ Θ). If A,Γ → Θ is unprovable in GL, then

A ∈ Γ; while if Γ → Θ, A is unprovable in GL, then A ∈ Θ.

The set of all the analytically saturated sequents are denoted by WGL.

We denote analytically saturated sequents by u, v, w, . . . ; besides, a(u) and

s(u) denote the antecedent and succedent of u, respectively.

The following proposition will be used tacitly.

Proposition 1.2. For a sequent calculus GL, a(u)∩ s(u) = ∅ for every

analytically saturated sequent u.
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Lemma 1.3. For a sequent calculus GL, if a sequent Γ → Θ is un-

provable in GL, then there is an analytically saturated sequent u with the

following properties:

(1.3-a) Γ ⊆ a(u) and Θ ⊆ s(u).

(1.3-b) a(u) ∪ s(u) ⊆ Sf(Γ ∪Θ).

(1.3-c) Let v be an analytically saturated sequent such that Γ ⊆ a(v), Θ ⊆
s(v), a(v)∪ s(v) ⊆ Sf(a(u)∪ s(u)), and every �-formula in a(u) and

s(u) is also in a(v) and s(v), respectively. Then, every �-formula

in a(v) and s(v) is also in a(u) and s(u), respectively.

Proof. Let A1, A2, . . . , Am, Am+1, . . . , An (0 ≤ m ≤ n) be an enu-

meration of all the formulas in Sf(Γ ∪ Θ) such that A1, A2, . . . , Am are

�-formulas, while others are not. Put Γ1 = Γ and Θ1 = Θ. Suppose that

Γk and Θk have been defined (1 ≤ k ≤ n). If Γk → Θk, Ak is unprovable,

then put Γk+1 = Γk and Θk+1 = Θk∪{Ak}; if Γk → Θk, Ak is provable, but

Ak,Γk → Θk is unprovable, then put Γk+1 = Γk ∪ {Ak} and Θk+1 = Θk;

otherwise, put Γk+1 = Γk and Θk+1 = Θk.

We will show that Γn+1 → Θn+1 is the desired sequent u.

Evidently, both properties (1.3-a) and (1.3-b) hold for Γn+1 → Θn+1,

namely, Γ ⊆ Γn+1, Θ ⊆ Θn+1 and Γn+1 ∪Θn+1 ⊆ Sf(Γ ∪Θ).

Now, it will be shown that Γn+1 → Θn+1 is analytically saturated. It is

clearly unprovable. Suppose A ∈ Sf(Γn+1 ∪Θn+1). It follows from (1.3-b)

that A ∈ Sf(Γn+1 ∪ Θn+1) ⊆ Sf(Γ ∪ Θ), and so A is Ak for some k (1 ≤
k ≤ n). Suppose also that A,Γn+1 → Θn+1 is unprovable. If Γk → Θk, A

were unprovable, then A ∈ Θk+1 ⊆ Θn+1, and so A,Γn+1 → Θn+1 would be

provable, which contradicts our assumption. Hence Γk → Θk, A is provable.

But A,Γk → Θk is unprovable, since Γk ⊆ Γn+1 and Θk ⊆ Θn+1. So

A ∈ Γk+1 ⊆ Γn+1. Similarly, if Γn+1 → Θn+1, A is unprovable, A ∈ Θn+1.

Thus, Γn+1 → Θn+1 is analytically saturated.

It is left to check the property (1.3-c). So, let v be an analytically

saturated sequent such that Γ ⊆ a(v), Θ ⊆ s(v), a(v) ∪ s(v) ⊆ Sf(Γn+1 ∪
Θn+1), and every �-formula �B in Γn+1 and Θn+1 is also in a(v) and s(v),

respectively. Suppose �B ∈ a(v). Since �B ∈ Sf(Γn+1∪Θn+1) ⊆ Sf(Γ∪Θ),

�B is Ak for some k (1 ≤ k ≤ m). If Γk → Θk,�B were unprovable,

then �B ∈ Θk+1 ⊆ Θn+1, and so �B would be in s(v), which contradicts

our assumption. Hence Γk → Θk,�B is provable. But �B,Γk → Θk is
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unprovable; for, since 1 ≤ k ≤ m, it follows Γk ⊆ Γ ∪ {�C|�C ∈ Γn+1} ⊆
a(v) and Θk ⊆ Θ ∪ {�C|�C ∈ Θn+1} ⊆ s(v). So �B ∈ Γk+1 ⊆ Γn+1.

Similarly, if �B ∈ s(v), then �B ∈ Θn+1. This ends the proof that (1.3-c)

holds for Γn+1 → Θn+1. �

It is Sections 3, 4 and 5 that the property (1.3-b) is utilized, while solely

in Section 3 for (1.3-c).

Lemma 1.4. Let GL be a sequent calculus. Suppose that 〈W,R〉 is

a Kripke frame with W ⊆ WGL, and the following properties hold for every

A, B and every u ∈ W :

(¬-a) ¬A ∈ a(u) implies A ∈ s(u).

(¬-s) ¬A ∈ s(u) implies A ∈ a(u).

(⊃-a) A⊃B ∈ a(u) implies A ∈ s(u) or B ∈ a(u).

(⊃-s) A⊃B ∈ s(u) implies A ∈ a(u) and B ∈ s(u).

(�-a) �A ∈ a(u) implies A ∈ a(v) for every v ∈ W such that uRv.

(�-s) �A ∈ s(u) implies A ∈ s(v) for some v ∈ W such that uRv.

Let |= be the satisfaction relation on 〈W,R〉 such that u |= p iff p ∈ a(u)

for every u ∈ W and every p. Then, C ∈ a(u) implies u |= C while C ∈ s(u)

implies u �|= C, for every C and every u ∈ W .

Proof. By simultaneous induction on the construction of C.

Case 1: C is a propositional letter p. If p ∈ a(u), then u |= p clearly. If

p ∈ s(u), then p �∈ a(u), so u �|= p.

Case 2: C is ¬A. Recall that u |= ¬A iff u �|= A. If ¬A ∈ a(u), then

A ∈ s(u) by (¬-a), so u �|= A by the hypothesis of induction, so u |= ¬A.

The remainder is similar.

Case 3: C is A⊃B. Similar to Case 2.

Case 4: C is �A. Recall that u |= �A iff v |= A for every v ∈ W such

that uRv. Suppose first that �A ∈ a(u). For every v ∈ W such that uRv,

it follows A ∈ a(v) by (�-a), so v |= A by the hypothesis of induction. So

u |= �A. Suppose next that �A ∈ s(u). By (�-s), it follows A ∈ s(v) for

some v ∈ W such that uRv. By the hypothesis of induction, v �|= A. So

u �|= �A. �
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Definition 1.5. An inference is admissible in a sequent calculus GL,

iff either some of the upper sequents of the inference is unprovable in GL,

or the lower one is provable in GL.

Think of the following inference rules:

(¬ →)
Γ → Θ, A

¬A,Γ → Θ
. (→ ¬) A,Γ → Θ

Γ → Θ,¬A
.

(⊃ →)
Γ → Θ, A B,Γ → Θ

A⊃B,Γ → Θ
. (→ ⊃)

A,Γ → Θ, B

Γ → Θ, A⊃B
.

Proposition 1.6. For a sequent calculus GL, the following equivalences

hold for every A and B.

(1) The inference (¬ →) is admissible in GL for every Γ and Θ, iff (¬-a)
holds for every u.

(2) The inference (→ ¬) is admissible in GL for every Γ and Θ, iff (¬-s)
holds for every u.

(3) The inference (⊃ →) is admissible in GL for every Γ and Θ, iff (⊃-a)

holds for every u.

(4) The inference (→ ⊃) is admissible in GL for every Γ and Θ, iff (⊃-s)

holds for every u.

Proof. (1) The ‘if ’ part: Suppose that ¬A,Γ → Θ is unprovable. Then,

by Lemma 1.3, ¬A ∈ a(u), Γ ⊆ a(u) and Θ ⊆ s(u) for some u. It follows

A ∈ s(u) by (¬-a), and so Γ → Θ, A is unprovable, since Γ ⊆ a(u) and

Θ ∪ {A} ⊆ s(u). The ‘only if ’ part: Suppose ¬A ∈ a(u). Since ¬A, a(u) →
s(u) is unprovable, neither is a(u) → s(u), A by the assumption. Moreover

A ∈ Sf(a(u)) ⊆ Sf(a(u) ∪ s(u)). So A ∈ s(u).

(2)–(4) Similar to (1). �

We put the second stipulation on a sequent calculus. So by the above

proposition, (¬-a), (¬-s), (⊃-a) and (⊃-s) always hold for any sequent

calculus.

Stipulation 2. The sequent calculus contains (¬ →), (→ ¬), (⊃ →)

and (→ ⊃) as inference rules.

Let GL be a sequent calculus for a logic L. Suppose that 〈W,R〉 is a

Kripke frame with W ⊆ WGL such that
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(a) if Γ → Θ is unprovable in GL, then Γ ⊆ a(u) and Θ ⊆ s(u) for some

u ∈ W ,

(b) the Kripke frame 〈W,R〉 enjoys the properties (�-a) and (�-s), and

(c) the accessibility relation R meets the condition of the Kripke frames

for the logic L,

and |= is the satisfaction relation on 〈W,R〉 defined as in Lemma 1.4.

Then, if Γ → Θ is unprovable in GL, then Γ ⊆ a(u) and Θ ⊆ s(u) for

some u ∈ W by (a), and so by Lemma 1.4 and (b), u rejects Γ → Θ, that is,

C ∈ Γ implies u |= C while C ∈ Θ implies u �|= C. This together with (c)

implies that, GL is complete with respect to the Kripke frame semantics for

L, and 〈W,R, |=〉 forms a universal Kripke model for L. Note that, when

W = WGL, the condition (a) holds by Lemma 1.3.

.2 The logics K, KT, KD, K4, K4D and S4

This section concerns the logics in Class 1, namely the logics K, KT, KD,

K4, K4D and S4. By the Kripke frames made of the analytically saturated

sequents, the inference rules that are added to the sequent calculi for these

logics are analyzed semantically. As a result, completeness as well as the

finite model property of the calculi and logics follow. The sequent calculi

are cut-free and have the subformula property naturally.

Consider the following inference rules:

(K)
Γ → A

�Γ → �A
. (D)

Γ →
�Γ →

. (4)
Γ,�Γ → A

�Γ → �A
.

(4D)
Γ,�Γ →
�Γ →

. (S4)
�Γ → A

�Γ → �A
. (T )

A,Γ → Θ

�A,Γ → Θ
.

The additional inference rules, besides those in Stipulations 1 and 2,

of the sequent calculus GL as well as the condition on the accessibility
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relations of the Kripke frames for the logic L are described in the following

table, where L ∈ {K,KT,KD,K4,K4D,S4}.

Logic Additional rules Condition on relations

K (K) none

KT (K), (T ) reflexive

KD (K), (D) serial

K4 (4) transitive

K4D (4), (4D) transitive and serial

S4 (S4), (T ) reflexive and transitive

Remember that a binary relation R on a set W is serial, iff for every

u ∈ W , uRv for some v ∈ W .

Definition 2.1. For a sequent calculus GL, the binary relations RK,

RK4 and RS4 on WGL are defined as follows.

(1) uRKv, iff �B ∈ a(u) implies B ∈ a(v) for every B.

(2) uRK4v, iff �B ∈ a(u) implies B,�B ∈ a(v) for every B.

(3) uRS4v, iff �B ∈ a(u) implies �B ∈ a(v) for every B.

Proposition 2.2. For a sequent calculus GL, the following equivalences

hold for every A.

(1) The inference (K) is admissible in GL for every Γ, iff for every u,

�A ∈ s(u) implies A ∈ s(v) for some v such that uRKv.

(2) The inference (D) is admissible in GL for every Γ, iff RK is serial.

(3) The inference (4) is admissible in GL for every Γ, iff for every u,

�A ∈ s(u) implies A ∈ s(v) for some v such that uRK4v.

(4) The inference (4D) is admissible in GL for every Γ, iff RK4 is serial.

(5) The inference (S4) is admissible in GL for every Γ, iff for every u,

�A ∈ s(u) implies A ∈ s(v) for some v such that uRS4v.

(6) The inference (T ) is admissible in GL for every Γ and Θ, iff �A ∈ a(u)

implies A ∈ a(u) for every u.
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Proof. (1) The ‘if ’ part: Suppose that �Γ → �A is unprovable. Then,

by Lemma 1.3, �Γ ⊆ a(u) and �A ∈ s(u) for some u. So A ∈ s(v) for some

v such that uRKv by the assumption. If B ∈ Γ, then �B ∈ �Γ ⊆ a(u), so

B ∈ a(v) by uRKv; hence Γ ⊆ a(v), and so Γ → A is unprovable. The ‘only

if ’ part: Suppose �A ∈ s(u). Put Γ = {B|�B ∈ a(u)}. Since �Γ ⊆ a(u)

and �A ∈ s(u), it follows that �Γ → �A is unprovable; hence, neither

is Γ → A by the assumption. So Γ ⊆ a(v) and A ∈ s(v) for some v by

Lemma 1.3. It follows uRKv from Γ ⊆ a(v).

(2)–(5) Similar to (1).

(6) Similar to Proposition 1.6 (1). �

Let L ∈ {K,KT,KD,K4,K4D,S4}. Then, GL is complete with re-

spect to the Kripke frame semantics for L by the following proposition.

Moreover, for an unprovable sequent Γ → Θ in GL, even if we limit the an-

alytically saturated sequents to those u’s such that a(u)∪ s(u) ⊆ Sf(Γ∪Θ),

the following argument remains valid; hence, the finite model property for

L also follows (Corollary 2.4).

Proposition 2.3. Suppose L ∈ {K,KT,KD,K4,K4D,S4} and con-

sider the Kripke frame 〈WGL, RL〉, where RKT = RKD = RK and RK4D =

RK4.

(1) The Kripke frame 〈WGL, RL〉 enjoys the properties (�-a) and (�-s).

(2) The accessibility relation RL on WGL meets the condition of the Kripke

frames for L.

Proof. The case where L ∈ {K,KT,KD}: (1) Immediate from the

definition of RK and Proposition 2.2 (1). (2) By Proposition 2.2 (6) and

(2).

The case where L ∈ {K4,K4D}: (1) Immediate from the definition of

RK4 and Proposition 2.2 (3). (2) By Proposition 2.2 (4).

The case where L = S4: (1) If �A ∈ a(u) and uRS4v, then �A ∈ a(v),

and so A ∈ a(v) by Proposition 2.2 (6); hence (�-a) holds. The property

(�-s) follows from Proposistion 2.2 (5). (2) Immediate from the definition

of RS4. �

Corollary 2.4. Suppose L∈{K,KT,KD,K4,K4D,S4}. The sequent

calculus GL and so the logic L are complete with respect to the Kripke frame
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semantics, and have the finite model property. The calculus GL is cut-free

and has the subformula property.

Remark 2.5. A sequent calculus does not necessarily has the subfor-

mula property, even if it is cut-free. For example, the sequent calculus that

is obtained from GKT by adding the inference rule

��A,Γ → Θ

�A,Γ → Θ

is cut-free and is complete with respect to the Kripke frame semantics for

S4, but does not have the subformula property.

.3 The logics K45 and K45D

This section concerns the logics in Class 2, namely the logics K45 and

K45D. By the Kripke frames made of the analytically saturated sequents

in a rather complicated manner, the inference rules that are added to the

sequent calculi for these logics are analyzed semantically. Similar properties

of the sequent calculi and the logics as the previous section follow. The

sequent calculi are cut-free and have the subformula property naturally.

Let (45) and (45D) be the following inference rules:

(45)
Γ,�Γ → �Θ, A

�Γ → �Θ,�A
. (45D)

Γ,�Γ → �Θ

�Γ → �Θ
.

Let L ∈ {K45,K45D}. The additional inference rules, besides those in
Stipulations 1 and 2, of the sequent calculus GL as well as the condition on

the accessibility relations of the Kripke frames for the logic L are described

in the following table.

Logic Additional rules Condition on relations

K45 (45) transitive and euclidean

K45D (45), (45D) transitive, euclidean and serial

Remember that a binary relation R on a set W is euclidean, iff uRv

and uRw imply vRw for every u, v, w ∈ W .

To deal with the logics K45 and K45D, the notion of maximality of

analytically saturated sequents is needed.
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Definition 3.1. For a sequent calculus GL, the binary relations R′
S4

and RS5 are defined as follows.

(1) uR′
S4v, iff �B ∈ s(u) implies �B ∈ s(v) for every B.

(2) uRS5v, iff uRS4v, uR
′
S4v, vRS4u and vR′

S4u.

Definition 3.2. An analytically saturated sequent u is called maximal,

iff uRS4v, uR′
S4v and a(v) ∪ s(v) ⊆ Sf({�B|�B ∈ a(u) ∪ s(u)}) imply

uRS5v, for every v.

It is easy to see that, if u is maximal and uRS5v, then v is also maximal.

The property (1.3-c) is used to obtain the following lemma, which is an

immediate corollary to Lemma 1.3.

Lemma 3.3. Let GL be a sequent calculus. For every analytically sat-

urated sequent u, there is an analytically saturarted sequent u∗ such that

uRS4u
∗, uR′

S4u
∗, a(u∗) ∪ s(u∗) ⊆ Sf({�B|�B ∈ a(u) ∪ s(u)}) and u∗ is

maximal.

Proof. Given u, apply Lemma 1.3 to the sequent {�B|�B ∈ a(u)} →
{�B|�B ∈ s(u)}. �

For each u, we fix u∗ described in the above lemma, in the rest of this

section. If u is maximal, uRS5u
∗.

Definition 3.4. For a sequent calculus GL, the binary relation RK45

on WGL is defined by: uRK45v, iff u∗RS5v and vRKv.

Proposition 3.5. For a sequent calculus GL, the following equivalences

hold for every A.

(1) The inference (45) is admissible in GL for every Γ and Θ, iff for every

u, �A ∈ s(u) implies A ∈ s(v) for some v such that uRK45v.

(2) The inference (45D) is admissible in GL for every Γ and Θ, iff RK45

is serial.

Proof. Since the proof of (2) is similar to that of (1), we will confine

ourselves to the proof of (1).

The ‘if ’ part: Suppose that�Γ → �Θ,�A is unprovable. By Lemma 1.3,

�Γ ⊆ a(u), �Θ ⊆ s(u) and �A ∈ s(u) for some u. So A ∈ s(v) for some
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v such that uRK45v by the assumption. If B ∈ Γ, then �B ∈ �Γ ⊆ a(u),

so �B ∈ a(v) by uRS4u
∗ and u∗RS4v, and so B ∈ a(v) by vRKv; hence

Γ ∪ �Γ ⊆ a(v). If B ∈ Θ, on the other hand, �B ∈ �Θ ⊆ s(u), so

�B ∈ s(v) by uR′
S4u

∗ and u∗R′
S4v; hence �Θ ⊆ s(v). So Γ,�Γ → �Θ, A

is unprovable.

The ‘only if ’ part: Suppose �A ∈ s(u). Then �A ∈ s(u∗) by uR′
S4u

∗.

Put Γ = {B|�B ∈ a(u∗)} and Θ = {B|�B ∈ s(u∗)}. Since �Γ → �Θ,�A

is unprovable, neither is Γ,�Γ → �Θ, A by the assumption. So, Γ ∪�Γ ⊆
a(v), �Θ ⊆ s(v), A ∈ s(v) and a(v)∪s(v) ⊆ Sf(Γ∪�Γ∪�Θ∪{A}) for some

v by Lemma 1.3. We will prove uRK45v by showing u∗RS5v and vRKv in

order. First, if �B ∈ a(u∗), then B ∈ Γ, so �B ∈ �Γ ⊆ a(v); while, if

�B ∈ s(u∗), then B ∈ Θ, so �B ∈ �Θ ⊆ s(v); hence u∗RS4v and u∗R′
S4v.

Moreover,

a(v) ∪ s(v) ⊆ Sf(Γ ∪�Γ ∪�Θ ∪ {A}) = Sf({�B|�B ∈ a(u∗) ∪ s(u∗)}).

Since u∗ is maximal, it follows u∗RS5v. Next, to show vRKv, suppose

�B ∈ a(v). Then �B ∈ a(u∗), since u∗RS5v implies vRS4u
∗. Hence

B ∈ Γ ⊆ a(v). So vRKv also holds. �

By the way, the analytically saturated sequent v introduced in the proof

of the ‘only if’ part is maximal.

Proposition 3.6. Suppose L ∈ {K45,K45D} and consider the Kripke

frame 〈WGL, RK45〉.

(1) The Kripke frame 〈WGL, RK45〉 enjoys the properties (�-a) and (�-s).

(2) The accessibility relation RK45 on WGL meets the condition of the

Kripke frames for L.

Proof. (1) If �A ∈ a(u) and uRK45v, then �A ∈ a(v) by uRS4u
∗ and

u∗RS4v, so A ∈ a(v) by vRKv; hence (�-a) holds. The property (�-s)

follows from Proposition 3.5 (1).

(2) To show first that RK45 is transitive, suppose that uRK45v and

vRK45w. Since u∗ is maximal and u∗RS5v, it follows that v is also max-

imal, and so vRS5v
∗. This together with u∗RS5v and v∗RS5w implies

u∗RS5w. In addtion, wRKw by vRK45w. So uRK45w. To show next that

RK45 is euclidean, suppose that uRK45v and uRK45w. We obtain vRS5v
∗

as above. This together with u∗RS5v and u∗RS5w implies v∗RS5w. In



A SEMANTICAL ANALYSIS OF CUT-FREE CALCULI FOR MODAL LOGICS 55

addition, wRKw by uRK45w. So vRK45w. When L = K45D, the fact

that the relation RK45 is serial follows from Proposition 3.5 (2). �

Corollary 3.7. Suppose L ∈ {K45,K45D}. The sequent calculus GL

and so the logic L are complete with respect to the Kripke frame semantics,

and have the finite model property. The calculus GL is cut-free and has the

subformula property.

.4 The logics KB, KTB, KDB, K4B and S5

This section concerns the logics in Class 3, namely the logics KB, KTB,

KDB, K4B and S5. Similarly to Section 2, the inference rules that are

added to the sequent calculi for these logics are analyzed semantically. As

a result, completeness as well as the finite model property of the calculi and

logics follow. The sequent calculi are not cut-free but have the subformula

property naturally.

Consider the following inference rules:

(cut)a
Γ → Θ, C C,∆ → Λ

Γ,∆ → Θ,Λ
, where C ∈ Sf(Γ ∪Θ ∪∆ ∪ Λ).

(B)a
Γ → �Ω, A

�Γ → Ω,�A
, where �Ω ⊆ Sf(Γ ∪ {A}).

(BD)a
Γ → �Ω

�Γ → Ω
, where �Ω ⊆ Sf(Γ).

(B45)a
Γ,�Γ → �Θ,�Ω, A

�Γ → �Θ,Ω,�A
, where �Ω ⊆ Sf(�Γ ∪Θ ∪ {A}).

(S5)
�Γ → �Θ, A

�Γ → �Θ,�A
.

The additional inference rules, besides those in Stipulations 1 and 2,

of the sequent calculus GL as well as the condition on the accessibility

relations of the Kripke frames for the logic L are described in the following

table, where L ∈ {KB,KTB,KDB,K4B,S5}.
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Logic Additional rules Condition on relations

KB (cut)a, (B)a symmetric

KTB (cut)a, (B)a, (T ) symmetric and reflexive

KDB (cut)a, (B)a, (BD)a symmetric and serial

K4B (cut)a, (B45)a symmetric and transitive

S5 (cut)a, (S5), (T ) equivalence relation

Proposition 4.1. For a sequent calculus GL, the inference (cut)a is

admissible for every Γ,Θ,∆,Λ and C with the restriction that C ∈ Sf(Γ ∪
Θ ∪∆ ∪ Λ), iff Sf(a(u) ∪ s(u)) ⊆ a(u) ∪ s(u) for every u.

Proof. The ‘if ’ part: Suppose that Γ,∆ → Θ,Λ is unprovable, and

C ∈ Sf(Γ ∪ Θ ∪ ∆ ∪ Λ). By Lemma 1.3, Γ ∪ ∆ ⊆ a(u) and Θ ∪ Λ ⊆ s(u)

for some u. Since C ∈ Sf(a(u) ∪ s(u)), it follows C ∈ a(u) ∪ s(u) by the

assumption. So, either C,Γ → Θ or ∆ → Λ, C is unprovable, according to

whether C ∈ a(u) or C ∈ s(u).

The ‘only if ’ part: Suppose C ∈ Sf(a(u) ∪ s(u)). Then either a(u) →
s(u), C or C, a(u) → s(u) is unprovable; for, if both were provable, a(u) →
s(u) would be also provable by the assumption, which is a contradiction.

Hence, either C ∈ s(u) or C ∈ a(u). �

Definition 4.2. For a sequent calculus GL, the binary relations RKB

and RK4B on WGL are defined as follows.

(1) uRKBv, iff uRKv and vRKu.

(2) uRK4Bv, iff uRK4v, uR
′
S4v, vRK4u and vR′

S4u.

Proposition 4.3. For a sequent calculus GL with the inference rule

(cut)a, the following equivalences hold for every A.

(1) The inference (B)a is admissible in GL for every Γ and Ω with the

restriction that �Ω ⊆ Sf(Γ ∪ {A}), iff for every u, �A ∈ s(u) implies

A ∈ s(v) for some v such that uRKBv.

(2) The inference (BD)a is admissible in GL for every Γ and Ω with the

restriction that �Ω ⊆ Sf(Γ), iff RKB is serial.

(3) The inference (B45)a is admissible in GL for every Γ, Θ and Ω with

the restriction that �Ω ⊆ Sf(�Γ∪Θ∪ {A}), iff for every u, �A ∈ s(u)

implies A ∈ s(v) for some v such that uRK4Bv.
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(4) The inference (S5) is admissible in GL for every Γ and Θ, iff for every

u, �A ∈ s(u) implies A ∈ s(v) for some v such that uRS5v.

Proof. Proof of (1). The ‘if ’ part: Suppose that �Γ → Ω,�A is

unprovable, and �Ω ⊆ Sf(Γ ∪ {A}). By Lemma 1.3, �Γ ⊆ a(u), Ω ⊆ s(u)

and �A ∈ s(u) for some u. So A ∈ s(v) for some v such that uRKBv by

the assumption. If B ∈ Γ, then �B ∈ �Γ ⊆ a(u), so B ∈ a(v) by uRKv;

hence Γ ⊆ a(v). So, it suffices to show �Ω ⊆ s(v); for, Γ ⊆ a(v), �Ω ⊆ s(v)

and A ∈ s(v) imply that Γ → �Ω, A is unprovable. Suppose B ∈ Ω, and

we will show �B ∈ s(v). By Proposition 4.1, �B ∈ �Ω ⊆ Sf(Γ ∪ {A}) ⊆
Sf(a(v)∪s(v)) ⊆ a(v)∪s(v). If �B were in a(v), then B ∈ a(u) would follow

by vRKu, while B ∈ Ω ⊆ s(u), which is a contradiction; hence �B �∈ a(v).

So �B ∈ s(v).

The ‘only if ’ part: Suppose �A ∈ s(u). Put Γ = {B|�B ∈ a(u)}
and Ω = {B ∈ s(u)|�B ∈ Sf(Γ ∪ {A})}. Since �Ω ⊆ Sf(Γ ∪ {A}) but

�Γ → Ω,�A is unprovable, neither is Γ → �Ω, A by the assumption. So,

Γ ⊆ a(v), �Ω ⊆ s(v), A ∈ s(v) and a(v)∪ s(v) ⊆ Sf(Γ∪�Ω∪{A}) for some

v by Lemma 1.3. It follows uRKv from Γ ⊆ a(v). So, it suffices to show

vRKu; for, then uRKBv. Suppose �B ∈ a(v). We will show B ∈ a(u). It

follows �B ∈ Sf(Γ ∪ �Ω ∪ {A}) = Sf(Γ ∪ {A}). So B ∈ Sf(Γ ∪ {A}) ⊆
Sf(a(u) ∪ s(u)) ⊆ a(u) ∪ s(u) by Proposition 4.1. If B were in s(u), then

B ∈ Ω and so �B ∈ s(v) would follow, which is a contradiction; hence

B �∈ s(u). So B ∈ a(u).

Proof of (2). Similar to (1).

Proof of (3). The ‘if ’ part: Suppose that �Γ → �Θ,Ω,�A is unprovable,

and �Ω ⊆ Sf(�Γ ∪ Θ ∪ {A}). By Lemma 1.3, �Γ ⊆ a(u), �Θ ∪ Ω ⊆ s(u)

and �A ∈ s(u) for some u. So A ∈ s(v) for some v such that uRK4Bv

by the assumption. If B ∈ Γ, then �B ∈ �Γ ⊆ a(u), so B,�B ∈ a(v)

by uRK4v; hence Γ ∪ �Γ ⊆ a(v). If B ∈ Θ, then �B ∈ �Θ ⊆ s(u), so

�B ∈ s(v) by uR′
S4v; hence �Θ ⊆ s(v). So, it is left to show �Ω ⊆ s(v); for,

Γ∪�Γ ⊆ a(v), �Θ∪�Ω ⊆ s(v) and A ∈ s(v) imply that Γ,�Γ → �Θ,�Ω, A

is unprovable. Suppose B ∈ Ω. We will show �B ∈ s(v). It follows

�B ∈ �Ω ⊆ Sf(�Γ ∪Θ ∪ {A}) ⊆ Sf(a(u) ∪ s(u)) ⊆ a(u) ∪ s(u)

by Proposition 4.1. Now, suppose temporarily that �B ∈ a(u). It follows

�B ∈ a(v) by uRK4v, so B ∈ a(u) by vRK4u. But B ∈ Ω ⊆ s(u), which
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is a contradiction. Hence �B �∈ a(u), so �B ∈ s(u), and so �B ∈ s(v) by

uR′
S4v.

The ‘only if ’ part: Suppose �A ∈ s(u). Put Γ = {B|�B ∈ a(u)},
Θ = {B|�B ∈ s(u)} and Ω = {B ∈ s(u)|�B ∈ Sf(�Γ ∪ Θ ∪ {A})}. Since

�Ω ⊆ Sf(�Γ ∪ Θ ∪ {A}) but �Γ → �Θ,Ω,�A is unprovable, neither is

Γ,�Γ → �Θ,�Ω, A by the assumption. So, Γ∪�Γ ⊆ a(v), �Θ∪�Ω ⊆ s(v),

A ∈ s(v) and a(v) ∪ s(v) ⊆ Sf(Γ ∪ �Γ ∪ �Θ ∪ �Ω ∪ {A}) for some v by

Lemma 1.3. It remains to show uRK4Bv, which can be obtained by showing

uRK4v, uR
′
S4v, vRK4u and vR′

S4u successively. If �B ∈ a(u), then B ∈ Γ,

so B,�B ∈ Γ ∪ �Γ ⊆ a(v); hence uRK4v. If �B ∈ s(u), then B ∈ Θ, so

�B ∈ �Θ ⊆ s(v); hence uR′
S4v. To show vRK4u next, suppose �B ∈ a(v).

We will show B,�B ∈ a(u). It is remarked that B �∈ Θ; for, if B were

in Θ, then �B ∈ �Θ ⊆ s(v) would follow, which is a contradiction. Since

�B ∈ Sf(Γ ∪ �Γ ∪ �Θ ∪ �Ω ∪ {A}) = Sf(�Γ ∪ �Θ ∪ {A}), it follows

�B ∈ Sf(�Γ ∪Θ ∪ {A}). So,

B,�B ∈ Sf(�Γ ∪Θ ∪ {A}) ⊆ Sf(a(u) ∪ s(u)) ⊆ a(u) ∪ s(u)

by Proposition 4.1. If B were in s(u), then B ∈ Ω and so �B ∈ �Ω ⊆ s(v)

would follow, which is a contradiction; hence B �∈ s(u). Moreover, �B �∈
s(u), since B �∈ Θ. Hence B,�B ∈ a(u). To show vR′

S4u last of all, suppose

�B ∈ s(v). We will show �B ∈ s(u). Similarly to the above,

�B ∈ Sf(Γ ∪�Γ ∪�Θ ∪�Ω ∪ {A}) ⊆ Sf(a(u) ∪ s(u)) ⊆ a(u) ∪ s(u).

If �B were in a(u), then B ∈ Γ and so �B ∈ �Γ ⊆ a(v) would follow,

which is a contradiction; hence �B �∈ a(u). So �B ∈ s(u).

Proof of (4). The ‘if ’ part: Suppose that �Γ → �Θ,�A is unprovable.

By Lemma 1.3, �Γ ⊆ a(u), �Θ ⊆ s(u) and �A ∈ s(u) for some u. So

A ∈ s(v) for some v such that uRS5v by the assumption. If B ∈ Γ, then

�B ∈ �Γ ⊆ a(u), so �B ∈ a(v) by uRS4v; hence �Γ ⊆ a(v). If B ∈ Θ,

then �B ∈ �Θ ⊆ s(u), so �B ∈ s(v) by uR′
S4v; hence �Θ ⊆ s(v). So

�Γ → �Θ, A is unprovable.

The ‘only if ’ part: Suppose �A ∈ s(u). Put Γ = {B|�B ∈ a(u)}
and Θ = {B|�B ∈ s(u)}. Since �Γ → �Θ,�A is unprovable, neither is

�Γ → �Θ, A by the assumption. So, �Γ ⊆ a(v), �Θ ⊆ s(v), A ∈ s(v)

and a(v) ∪ s(v) ⊆ Sf(�Γ ∪ �Θ ∪ {A}) for some v by Lemma 1.3. We will

prove uRS5v by showing uRS4v, uR
′
S4v, vRS4u and vR′

S4u successively. If
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�B ∈ a(u), then B ∈ Γ, so �B ∈ �Γ ⊆ a(v); hence uRS4v. If �B ∈ s(u),

then B ∈ Θ, so �B ∈ �Θ ⊆ s(v); hence uR′
S4v. If �B ∈ a(v) ∪ s(v), then

�B ∈ Sf(�Γ ∪�Θ ∪ {A}) ⊆ Sf(a(u) ∪ s(u)) ⊆ a(u) ∪ s(u)

by Proposition 4.1. So, if �B ∈ a(v), then �B ∈ a(u); for, otherwise,

�B ∈ s(u) and so �B ∈ s(v) by uR′
S4v, which is a contradiction; hence

vRS4u. If �B ∈ s(v) then �B ∈ s(u); for, otherwise, �B ∈ a(u) and so

�B ∈ a(v) by uRS4v, which is a contradiction; hence vR′
S4u. �

Proposition 4.4. Suppose L ∈ {KB,KTB,KDB,K4B,S5} and con-

sider the Kripke frame 〈WGL, RL〉, where RKTB = RKDB = RKB.

(1) The Kripke frame 〈WGL, RL〉 enjoys the properties (�-a) and (�-s).

(2) The accessibility relation RL on WGL meets the condition of the Kripke

frames for L.

Proof. The case where L ∈ {KB,KTB,KDB}: By the definition of

RKB, Propositions 4.3 (1), 2.2 (6) and 4.3 (2). The case where L = K4B:

By the definition of RK4B and Proposition 4.3 (3). The case where L = S5:

By the definition of RS5, Propositions 2.2 (6) and 4.3 (4). �

Corollary 4.5. Suppose L ∈ {KB,KTB,KDB,K4B,S5}. The se-

quent calculus GL and so the logic L are complete with respect to the Kripke

frame semantics, and have the finite model property. The calculus GL is

not cut-free but has the subformula property.

.5 The logics K5 and K5D

This section concerns the logics in Class 4, namely the logics K5 and K5D.

By the Kripke frames made of specific analytically saturated sequents, the

inference rules that are added to the sequent calculi for these logics are

analyzed semantically. As a result, completeness as well as the finite model

property of the calculi and logics follow. The sequent calculi are not cut-

free and lack the subformula property in the original sense, but enjoy an

extended subformula property.

Since the sequent calculi GK5 and GK5D lack the subformula property

in the original sense, we extend the notion of subformula (cf. Takano [5]).
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Definition 5.1. (1) An internal subformula of A is a subformula of

some formula C such that �C is a subformula of A.

(2) A K5-subformula of A is either a subformula of A or the formula of the

form �¬�B or ¬�B, where �B is an internal subformula of A.

The sets of all the internal subformulas and K5-subformulas of some

formulas in Γ are denoted by InSf(Γ) and SfK5(Γ), respectively.

If �A is an internal subformula of B, and B is a K5-subformula of C,

then �A is an internal subformula of C. If A is a K5-subformula of B, and

B is a K5-subformula of C, then A is a K5-subformula of C.

Let (cut)5, (5) and (5D) be the following inference rules:

(cut)5
Γ → Θ, C C,∆ → Λ

Γ,∆ → Θ,Λ
, where C ∈ SfK5(Γ ∪Θ ∪∆ ∪ Λ).

(5)
Γ → �Θ, A

�Γ → �Θ,�A
. (5D)

Γ → �Θ

�Γ → �Θ
.

The additional inference rules, besides those in Stipulations 1 and 2,

of the sequent calculus GL as well as the condition on the accessibility

relations of the Kripke frames for the logic L are described in the following

table, where L ∈ {K5,K5D}.

Logic Additional rules Condition on relations

K5 (cut)5, (5) euclidean

K5D (cut)5, (5), (5D) euclidean and serial

The inference (cut)5 can be characterized quite similarly to Proposi-

tion 4.1, provided that Definition 1.1 of analytical saturation is modified so

as to concern the K5-subformulas, yet we don’t involve ourselves in the mod-

ified one here. Then, it is to be remarked that, even if GL contains (cut)5,

and if u is an analytically saturated sequent in GL (in the original sense of

Definition 1.1), it is not always the case that SfK5(a(u)∪s(u)) ⊆ a(u)∪s(u).
For, suppose A ∈ SfK5(a(u) ∪ s(u)). Then, either a(u) → s(u), A or

A, a(u) → s(u) is unprovable by (cut)5. But, to apply the property

(1.1-b), A’s being in SfK5(a(u)∪s(u)) is insufficient, but it is necessary that

A ∈ Sf(a(u)∪ s(u)). It is always the case that Sf(a(u)∪ s(u)) ⊆ a(u)∪ s(u)

instead (cf. Proposition 4.1).
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Definition 5.2. For a sequent calculus GL, W �
GL is defined to be the

set of all the analytically saturated sequents u’s in GL that satisfy the

following property:

(5.2-a) For every B, if �B ∈ InSf(a(u) ∪ s(u)) then either �B ∈ s(u) or

�¬�B ∈ a(u) ∪ s(u).

Lemma 5.3. For a sequent calculus GL with the inference rule (cut)5,

if Γ → Θ is unprovable in GL, then Γ ⊆ a(u) and Θ ⊆ s(u) for some

u ∈ W �
GL.

Proof. Let A1, A2, . . . , An be an enumeration of all the formulas in

SfK5(Γ∪Θ). Put Γ1 = Γ and Θ1 = Θ. Suppose that Γk and Θk have been

defined so that Γ ⊆ Γk, Θ ⊆ Θk but Γk → Θk is unprovable (1 ≤ k ≤ n).

Then, either Γk → Θk, Ak or Ak,Γk → Θk is unprovable; for, if both were

provable, since Ak ∈ SfK5(Γ ∪ Θ) ⊆ SfK5(Γk ∪ Θk), it would follow that

Γk → Θk is provable by (cut)5, which contradicts our assumption. Hence,

put Γk+1 = Γk and Θk+1 = Θk∪{Ak}, or Γk+1 = Γk∪{Ak} and Θk+1 = Θk

so that Γk+1 → Θk+1 is also unprovable.

We claim that Γn+1 → Θn+1 is the required u ∈ W �
GL. Evidently Γ ⊆

Γn+1, Θ ⊆ Θn+1, and Γn+1 → Θn+1 is unprovable; moreover, Γn+1∪Θn+1 =

SfK5(Γ∪Θ). It is left to check the properties (1.1-b) and (5.2-a) for Γn+1 →
Θn+1. Let’s show (5.2-a) first. So, suppose �B ∈ InSf(Γn+1∪Θn+1). Since

�¬�B ∈ SfK5(Γn+1 ∪Θn+1) and

SfK5(Γn+1 ∪Θn+1) = SfK5(SfK5(Γ ∪Θ)) ⊆ SfK5(Γ ∪Θ) = Γn+1 ∪Θn+1,

it follows �¬�B ∈ Γn+1 ∪ Θn+1. So (5.2-a) has been shown. To show

(1.1-b) next, suppose A ∈ Sf(Γn+1∪Θn+1). Then, since Sf(Γn+1∪Θn+1) ⊆
SfK5(Γn+1 ∪ Θn+1) ⊆ Γn+1 ∪ Θn+1, it follows A ∈ Γn+1 ∪ Θn+1. So, if

A,Γn+1 → Θn+1 is unprovable, then A �∈ Θn+1, and so A ∈ Γn+1. Similarly,

if Γn+1 → Θn+1, A is unprovable, then A ∈ Θn+1. Thus, (1.1-b) for Γn+1 →
Θn+1 has been also shown. �

Definition 5.4. For a sequent calculus GL, the binary relation RK5

on W �
GL is defined as follows, by first introducing an auxiliary relation S.

(1) uSv, iff �B ∈ a(v)∪ s(v) implies �B ∈ s(u) or �¬�B ∈ a(u)∪ s(u) for

every B.
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(2) uRK5v, iff uRKv, uR′
S4v and uSv.

Proposition 5.5. For a sequent calculus GL with the inference rule

(cut)5, the following equivalences hold for every A.

(1) The inference (5) is admissible in GL for every Γ and Θ, iff for every

u ∈ W �
GL, �A ∈ s(u) implies A ∈ s(v) for some v ∈ W �

GL such that

uRK5v.

(2) The inference (5D) is admissible in GL for every Γ and Θ, iff RK5 is

serial on W �
GL.

Proof. Since the proof of (2) is similar to that of (1), we will confine

ourselves to the proof of (1).

The ‘if ’ part: Suppose that�Γ → �Θ,�A is unprovable. By Lemma 5.3,

�Γ ⊆ a(u), �Θ ⊆ s(u) and �A ∈ s(u) for some u ∈ W �
GL. So A ∈ s(v)

for some v ∈ W �
GL such that uRK5v by the assumption. If B ∈ Γ, then

�B ∈ �Γ ⊆ a(u), so B ∈ a(v) by uRKv; hence Γ ⊆ a(v). If B ∈ Θ,

then �B ∈ �Θ ⊆ s(u), so �B ∈ s(v) by uR′
S4v; hence �Θ ⊆ s(v). So,

Γ → �Θ, A is unprovable.

The ‘only if ’ part: Suppose �A ∈ s(u), where u ∈ W �
GL. Put Γ =

{B|�B ∈ a(u)} and Θ = {B|�B ∈ s(u)}. Since �Γ → �Θ,�A is unprov-

able, neither is Γ → �Θ, A by the assumption. So, Γ ⊆ a(v), �Θ ⊆ s(v),

A ∈ s(v) and a(v)∪s(v) ⊆ Sf(Γ∪�Θ∪{A}) for some analytically saturated

sequent v by Lemma 1.3. Since uRKv and uR′
S4v follow from Γ ⊆ a(v) and

�Θ ⊆ s(v) respectively, it is left to check that the property (5.2-a) for v

and the relation uSv hold. Let’s show uSv first. Since

a(v) ∪ s(v) ⊆ Sf(Γ ∪�Θ ∪ {A}) = �Θ ∪ Sf(Γ ∪Θ ∪ {A})
⊆ �Θ ∪ InSf(�Γ ∪�Θ ∪ {�A}) ⊆ s(u) ∪ InSf(a(u) ∪ s(u)),

if �B ∈ a(v) ∪ s(v), then either �B ∈ s(u) or �B ∈ InSf(a(u) ∪ s(u)); in

the latter case, by (5.2-a) for u, either �B ∈ s(u) or �¬�B ∈ a(u) ∪ s(u).

Thus uSv has been shown. Lastly, let us show (5.2-a) for v. So, suppose

�B ∈ InSf(a(v)∪s(v)). Since InSf(a(v)∪s(v)) ⊆ Sf(a(v)∪s(v)) ⊆ a(v)∪s(v)
by Proposition 4.1, it follows from uSv just shown that either �B ∈ s(u)

or �¬�B ∈ a(u) or �¬�B ∈ s(u). In the first (second, respectively) case,

�B ∈ s(v) by uR′
S4v (by uRKv and Proposition 1.6 (1), respectively). In
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the last case, �¬�B ∈ s(v) by uR′
S4v. So, (5.2-a) for v has been also

shown. �

By the following proposition together with Lemma 5.3, GL is complete

with respect to the Kripke frame semantics for L, where L ∈ {K5,K5D}.
So we have obtained another proof of the modified subformula property for

GL, that is, if Γ → Θ is valid in the sense of the Kripke frame semantics

for L, it has a proof in GL such that every formula occurring in it belongs

to SfK5(Γ ∪ Θ), which was first proved in Takano [5]. Moreover, for an

unprovable sequent Γ → Θ in GL, by limiting the analytically saturated

sequents to those u’s such that a(u)∪ s(u) ⊆ SfK5(Γ∪Θ), the finite model

property for L also follows (Corollary 5.7).

The following remark is useful in proving the next proposition: If L ∈
{K5,K5D} and u is analytically saturated in GL, then �¬�B ∈ s(u)

implies �B ∈ a(u). For, since the sequent → �B,�¬�B is provable in

GL, it is not the case that both �B and �¬�B are in s(u); moreover,

�¬�B ∈ s(u) implies �B ∈ Sf(s(u)) ⊆ a(u) ∪ s(u) by Proposition 4.1.

Proposition 5.6. Suppose L ∈ {K5,K5D} and consider the Kripke

frame 〈W �
GL, RK5〉.

(1) The Kripke frame 〈W �
GL, RK5〉 enjoys the properties (�–a) and (�–s).

(2) The accessibility relation RK5 on W �
GL meets the condition of the Kripke

frames for L.

Proof. (1) If �A ∈ a(u) and uRK5v, then A ∈ a(v) by uRKv; hence

(�–a) holds. The property (�–s) follows from Proposition 5.5 (1).

(2) We will show that the relation RK5 is euclidean by deriving vRK5w

from uRK5v and uRK5w. First, to show vRKw, suppose �B ∈ a(v). Since

uSv, it follows that either �B ∈ s(u) or �¬�B ∈ a(u) or �¬�B ∈ s(u)

holds. In the first (second, respectively) case, �B ∈ s(v) by uR′
S4v (by

uRKv and Proposition 1.6 (1), respectively), and this contradicts to �B ∈
a(v). In the last case, it follows �B ∈ a(u), and so B ∈ a(w) by uRKw.

Next, to show vR′
S4w, suppose �B ∈ s(v). Similarly to the above, it

follows that either �B ∈ s(u) or �¬�B ∈ a(u) or �¬�B ∈ s(u) holds.

In the first (second, respectively) case, �B ∈ s(w) by uR′
S4w (by uRKw

and Proposition 1.6 (1), respectively). In the last case, �¬�B ∈ s(v) by

uR′
S4v, and so �B ∈ a(v), which contradicts to �B ∈ s(v). It is left to
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show vSw. So, suppose �B ∈ a(w)∪s(w). Since uSw, it follows that either

�B ∈ s(u) or �¬�B ∈ a(u) or �¬�B ∈ s(u) holds. In the first (second,

respectively) case, �B ∈ s(v) by uR′
S4v (by uRKv and Proposition 1.6 (1),

respectively). In the last case, �¬�B ∈ s(v) by uR′
S4v. This ends the

derivation of vRK5w.

When L = K5D, the fact that RK5 is serial follows from Proposi-

tion 5.5 (2). �

Corollary 5.7. Suppose L ∈ {K5,K5D}. The sequent calculus GL

and so the logic L are complete with respect to the Kripke frame semantics,

and have the finite model property. Though the calculus GL is not cut-free

and lacks the subformula property in the original sense, it has an extended

subformula property.
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