
Schedae Informaticae Vol. 24 (2015): 239–251
doi: 10.4467/20838476SI.16.020.4361

On the Path Sequence of a Graph

S lawomir Bakalarski, Jakub Zygad lo
Institute of Computer Science and Computational Mathematics

Faculty of Mathematics and Computer Science, Jagiellonian University
ul.  Lojasiewicza 6, 30-348 Kraków, Poland

e-mail: Slawomir.Bakalarski@uj.edu.pl, Jakub.Zygadlo@ii.uj.edu.pl

Abstract. A subset S of vertices of a graph G = (V,E) is called a k-path vertex

cover if every path on k vertices in G contains at least one vertex from S. Denote

by ψk(G) the minimum cardinality of a k-path vertex cover in G and form a

sequence ψ(G) = (ψ1(G), ψ2(G), . . . , ψ|V |(G)), called the path sequence of G.

In this paper we prove necessary and sufficient conditions for two integers to

appear on fixed positions in ψ(G). A complete list of all possible path sequences

(with multiplicities) for small connected graphs is also given.
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1. Introduction

Let G be a graph and let k be a positive integer. Following [3], define a k-path vertex
cover (k-PVC for short) of G as a subset S of vertices of G such that every path on k
vertices in G has at least one vertex in common with S. A k-PVC is called minimum
if it has minimum cardinality among all k-path vertex covers of G. This minimum
cardinality is denoted by ψk(G) and called a k-path number of G. Our main subject
is to investigate the properties of path sequences, defined as follows:

Definition 1 Let G = (V,E) be a graph on n vertices. The sequence of all path
numbers, namely

ψ(G) = (ψ1(G), ψ2(G), . . . , ψn(G))

will be called a path sequence of G.
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The problem of determining path numbers appears to have its motivation in the
Canvas protocol for wireless sensor networks [15]. Other applications emerge in the
context of security of computer networks [1] and processing of large graphs repre-
senting road networks (eg. road planning), see [9]. In all these areas in addition
to determining k-PVCs and ψk(G) for a fixed k, it is also natural to ask another
question: given a number t of vertices (representing tamper-proof sensors, firewalls in
a network, POIs on a map, etc.) find path lengths for which t is sufficient in terms
of system security, map accuracy, etc. In other words, find the largest number k such
that ψk(G) > t. One can also consider ‘upgrades’ of the system in question, for ex-
ample: if we want to decrease k (i.e. increase system security, increase map accuracy,
etc.), how much needs t be increased? These questions are clearly related to a path
sequence and its subsequences.

Path numbers generalize some well-known problems from graph theory, for exam-
ple the cardinality of a minimum vertex cover of a graph G equals ψ2(G), dissociation
number of G is equal to |V | − ψ3(G) (see [3], [12]) and in general values of ψk(G)
are exactly cardinalities of minimum vertex covers of k-uniform ’path hypergraph’
H built from G (every path P on k vertices in G gives rise to a hyperedge in H
containing vertices of P , see [3]). The task of computing ψk(G) is NP-complete for
a general graph G and any k ≥ 2 (one can use a reduction from minimum vertex
cover problem given in [3], Theorem 1). However, there do exist classes of graphs for
which polynomial-time algorithms are available for all k - for instance trees as shown
by Brešar et al. in [3] or graphs with bounded tree-width (see [3], [6]). Apart from
that, exact formulae to compute ψk(G) are known only for some special classes of
graphs and particular values of k. These include for example grids and k = 3 (see
[4]), rooted product graphs and k = 3 (see [10]). In the case of other graph products
some bounds and exact values (for k = 2, 3) are also given in [11]. The paper [10]
gives one of the very few known relations between the numbers ψm(G) for different
m (namely between the value of ψk(G ◦H) in a product graph and values of ψk(G),
ψk(H) and ψ2(H) of its factors) – in Section 3. we present some new results of this
kind.

As for the approximation of path numbers, following [3] one can adapt standard
2-approximation algorithm for the minimum vertex cover problem to approximate
ψk(G) within a factor of k – but polynomial-time approximation with better constant
factor is not known in general for ψk(G) and k > 3. For k = 3 however, there exist
algorithms of Tu and Zhou [17], [18] with an approximation factor of 2. Some recent
results for approximating ψ3(G) and ψ4(G) in cubic graphs are also given in [13], [16].
On the other hand, the famous result of Dinur and Safra [8] shows that it is NP-hard to
approximate the value of ψ2(G) to within any factor smaller than 10

√
5−21 = 1.3606...

(unless P = NP). In [7] it is shown that approximation of minimum vertex cover in
k-uniform hypergraphs for k ≥ 3 is NP-hard within a constant factor below k−1 and
thus it seems unlikely that better approximation of ψk(G) can be achieved. Bearing
that in mind, it appears difficult to obtain a constant approximation factor for a path
sequence as a whole (i.e. approximate all ψk(G) within the same factor, independent
of k and number of vertices in G), but the problem is worth further research.
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2. Elementary results

Unless otherwise stated, in the following G will denote a (simple, nonempty) graph
on n vertices and k a positive integer satisfying 1 ≤ k ≤ n.

For the standard notations and definitions in graph theory we refer the reader to
[2]; here we only recall some extensively used notations. If G = (V,E) is a graph and
S ⊂ V , then G[S] denotes the subgraph induced by S. Now for v ∈ V and e ∈ E we
denote by G− v the graph G[V \ {v}] and by G− e the graph (V,E \ {e}). We will
also write |G| for the number of vertices in G. By Pn, Cn and Kn we denote a path,
a cycle and a complete graph on n vertices respectively. A complete bipartite graph
with partitions of size a and b will be denoted by Ka,b. The symbol ' denotes graph
isomorphism and by ’disjoint graphs’ we mean vertex disjoint graphs. For a vertex v
of G we denote by d(v) the degree of v and by N(v) the neighbourhood of v (the set
of all vertices adjacent to v).

Let us first note that from the definition of path numbers one immediately gets
ψ1(G) = n, ψk(G) ≤ n− k + 1 (an arbitrary subset of n− k + 1 vertices is a k-PVC)
and that a path sequence is non-increasing, i.e. ψ1(G) ≥ ψ2(G) ≥ ψ3(G) ≥ . . . ≥
ψn(G) ≥ 0. An easy calculation gives path numbers for paths, cycles and complete
graphs, namely ψk(Pn) =

⌊
n
k

⌋
, ψk(Cn) =

⌈
n
k

⌉
and ψk(Kn) = n− k + 1 (see [4]). We

present values for complete bipartite graphs below.

Proposition 2 Let 1 ≤ k ≤ a+ b. Then:

ψk(Ka,b) =





a+ b if k = 1,
min{a, b} −

⌊
k
2

⌋
+ 1 for 1 < k ≤ 2 min{a, b}+ 1,

0 otherwise.

Proof. Let us write A and B for partitions of Ka,b with |A| = a ≤ b = |B|. The case
k = 1 is clear. Assume that 1 < k ≤ a+ b and take p = a−

⌊
k
2

⌋
+1. Since any path in

Ka,b alternates between A and B, a path on k vertices must have at least
⌊
k
2

⌋
vertices

in common with A. It follows that for k > 2a + 1 there is no path on k vertices in
Ka,b and so ψk(Ka,b) = 0. So let k ≤ 2a+ 1 and note that from the above reasoning
an arbitrary set of p vertices in A is a k-PVC and consequently ψk(Ka,b) ≤ p.

Now let T be a subset of A ∪ B and |T | = p− 1. To show that ψk(Ka,b) > p− 1
we will build a path on k vertices disjoint from T . It suffices to find an arbitrary set
of
⌊
k
2

⌋
vertices in A \T and

⌈
k
2

⌉
vertices in B \T (or vice versa). Note that there are

at least a− p+ 1 =
⌊
k
2

⌋
vertices in A \ T and also at least b− p+ 1 ≥

⌊
k
2

⌋
vertices in

B \T , since b ≥ a. If b > a, then b− p+ 1 ≥
⌊
k
2

⌋
+ 1 ≥

⌈
k
2

⌉
and the result follows. So

we can assume that a = b. If |A \T | >
⌊
k
2

⌋
, then |A \T | ≥

⌈
k
2

⌉
and we are done since

|B \ T | ≥
⌊
k
2

⌋
. By symmetry, the only case left is |A| = |B|, |A \ T | = |B \ T | =

⌊
k
2

⌋
.

But if |A \ T | =
⌊
k
2

⌋
, then T ⊂ A and B ∩ T = ∅, so |B \ T | = |B|. It follows that

|A \ T | = |B \ T | = |B| = |A| and so T = ∅; consequently p = 1 and a =
⌊
k
2

⌋
, so

k = 2a or k = 2a + 1. It is easily verified that ψ2a(Ka,a) = 1 and the value agrees
with the formula given in the proposition; the case k = 2a + 1 is impossible since
k ≤ a+ b = 2a.
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Let us also note the following useful lemma:

Lemma 3 Let G = (V,E) be a graph on n ≥ 2 vertices, k < n and v ∈ V . Then
ψk(G) ≤ ψk(G− v) + 1. Moreover, the following conditions are equivalent:

1. ψk(G) = ψk(G− v) + 1,

2. ∃S ⊂ V : S is a minimum k-PVC for G and v ∈ S,

3. ∃T ⊂ V \ {v} : T is a k-PVC for G− v and T ∪ {v} is a minimum k-PVC for
G.

Proof. Let U be a minimum k-PVC for G− v. Then clearly U ∪ {v} is a k-PVC for
G and so ψk(G) ≤ ψk(G− v) + 1.
Now suppose that (1) holds and U is as above - then U ∪ {v} is a minimum k-PVC
for G and (2) follows with S = U ∪ {v}. If (2) holds, then T = S \ {v} is a k-PVC
for G − v (a path disjoint from T in G − v is disjoint from S in G) and (3) clearly
follows. Supposing that (3) holds gives ψk(G) = |T |+ 1 ≥ ψk(G− v) + 1 ≥ ψk(G) by
the first part of the lemma, so ψk(G) = ψk(G− v) + 1.

As a corollary we get:

Corollary 4 Let G = (V,E) be a graph and e ∈ E. Then ψk(G) ≤ ψk(G− e) + 1.

Proof. Let e = uv. Since G− u is a subgraph of G− e, we apply previous lemma to
obtain ψk(G) ≤ ψk(G− u) + 1 ≤ ψk(G− e) + 1.

The following remark shows that there are no restrictions on the structure of
a minimum k-PVC.

Remark 5 For any graph H = (W,F ), there exists a supergraph G of H such that
G[W ] ' H and that W is a minimum k-PVC for G.

Proof. We adapt the construction from the proof of [3], Theorem 1. So let us replace

each vertex v of H with a path P (v) = v − w(v)
2 − . . .− w(v)

k on k vertices (paths for
different v are pairwise disjoint), leaving edges F intact. Call the resulting graph G
and note that G[W ] ' H. Now any k-PVC for G must contain at least one vertex
from each path P (v), so ψk(G) ≥ |W |. But W is clearly a k-PVC, so ψk(G) = |W |.

3. Two element subsequences

In this section we investigate relations between two path numbers ψk(G) and ψm(G)
for an arbitrary graph G. Let us start with the following example, showing that two
elements of a path sequence must satisfy some additional conditions apart from the
ones given in the previous section.
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Example 6 There is no graph G satisfying ψ10(G) = 2 and ψ2(G) = 5.

Proof. Suppose that such a graph G exists. Let S be a minimum 2-PVC for G and
v ∈ S. Note that at least one vertex from any edge in G belongs to S. Take an
arbitrary path P in G that avoids v. Since for every two consecutive vertices on P at
least one is from S and P has no more than 4 vertices in common with S – it follows
that P is a path on at most 9 vertices. This shows that {v} is a 10-PVC for G and
so ψ10(G) ≤ 1, a contradiction.

These additional necessary conditions are presented in the following proposition.

Proposition 7 Let 1 ≤ m < k and ψk(G) > 0. Then ψm(G) ≥ ψk(G) +
⌊
k
m

⌋
− 1.

Proof. We will proceed by induction on n - the number of vertices in G. The result
clearly follows for n ≤ 2 and also for all graphs G with ψk(G) = 1 (including the case
k = n), because we have ψm(G) ≥ ψm(Pk) =

⌊
k
m

⌋
. So we can assume that n > k ≥ 2

and ψk(G) > 1. Let S be a minimum m-PVC for G and v ∈ S. By Lemma 3, we get
ψm(G) = ψm(G−v)+1 and ψk(G−v) ≥ ψk(G)−1 > 0. By the induction hypothesis
ψm(G − v) ≥ ψk(G − v) +

⌊
k
m

⌋
− 1 and consequently ψm(G) = ψm(G − v) + 1 ≥

ψk(G− v) +
⌊
k
m

⌋
≥ ψk(G)− 1 +

⌊
k
m

⌋
.

Remark 8 Notice that the condition ψk(G) > 0 in the above proposition cannot be
omitted: take for example G = K1,8 (a star on 9 vertices), k = 9 and m ∈ {2, 3, 4}.
Remark 9 Let m < k and take G equal to s disjoint copies of Pm. Then clearly
ψm(G) = s and ψk(G) = 0. This shows that there exist graphs G with ψk(G) = 0 and
an arbitrary value of ψm(G).

As the converse of Proposition 7 we show the following:

Theorem 10 Let k be a positive integer and 1 ≤ m < k. If two integers pk, pm
satisfy: pk > 0 and pm ≥ pk +

⌊
k
m

⌋
− 1, then there exists a (connected) graph G such

that ψk(G) = pk and ψm(G) = pm.

Proof. Let
⌊
k
m

⌋
= a, i.e. am ≤ k < (a + 1)m. Take pk + a − 1 disjoint paths

P (1), P (2), . . . , P (pk+a−1) on 2m−1 vertices and let P (i) = v
(i)
1 −v

(i)
2 −. . .−v

(i)
2m−1. Now

add edges connecting vertices v
(i)
x and v

(j)
m for all i 6= j and all x, i.e. 1 ≤ x ≤ 2m−1.

Call the resulting graph H and let M = {v(i)m : 1 ≤ i ≤ pk + a − 1} denotes the set
of “middle” vertices of all P (i) (see Fig. 1). Since ψm(P (i)) = 1, it is easily seen that
M is a minimum m-PVC for H and so ψm(H) = |M | = pk + a− 1.

Let us now prove the following lemma concerning H and M :

Lemma 11 Any path on k vertices in H must contain at least a vertices from M .

Proof. Suppose to the contrary thatW = w1−. . .−wk is a path inH and |{w1, . . . , wk}
∩M | = t < a. Let us divide W into consecutive fragments (subpaths) contained in
paths P (i), i.e. W = W 1 − . . . −W s, where each W j is a (maximal) subpath of W
with all vertices in some fixed P (i). Note that it is possible for multiple W j to be
subpaths of a single P (i) and that any W j with at least m vertices must contain some
vertex from M . Let us now define two sets of indices j: I0 = {j : W j ∩M = ∅}
and I1 = {j : W j ∩M 6= ∅} = {j : W j has exactly one vertex in common with M}.
Clearly, the total number of W j equals s = |I0| + |I1| = |I0| + t. Now we write I1
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Figure 1. An example graph H for m = 3 and pk + a− 1 = 3. Paths P (i) are drawn
horizontal, set M is marked in black.

as a disjoint sum of the following subsets: B = {j : W j has more than m vertices},
U = {j : W j is a single vertex from M} and R = I1 \ (B ∪U) = {j ∈ I1 : 2 ≤ |W j | ≤
m}. Counting the number of vertices in W as a sum of the numbers of vertices in W j

yields the following bound:

|W | =
∑

j∈I0∪I1
|W j | =

∑

j∈I0∪B∪U∪R
|W j | ≤

≤|I0| · (m− 1) + |B| · (2m− 1) + |U | · 1 + |R| ·m =

=|I0| · (m− 1) + |B| · (2m− 1) + |U |+ (s− |I0| − |B| − |U |) ·m =

=(s+ |B| − |U |) ·m+ |U | − |I0| − |B|

We will now show the following claim: let a < b be two integers such that the last
(in order imposed by W ) vertex in W a and the first vertex in W b are not in M . Then
there exists an index p ∈ U such that a < p < b. Indeed, by the construction of H
and W j , since the last vertex in W a is not in M , the first one in W a+1 must be in
M . Analogously, the last vertex in W b−1 must be in M . If a + 1 ∈ U or b − 1 ∈ U ,
then we are done. If not, the last vertex in W a+1 and the first one in W b−1 are not
in M and we can proceed by induction on b− a (the case b− a = 1 being impossible
and b− a = 2 easily verified).

Since any a, b ∈ I0 ∪ B such that a < b satisfy the hypothesis of the claim, we
get |U | ≥ |I0| + |B| − 1. The bound for |W | attains its maximum for the smallest
possible |U |, that is |U | = |I0|+ |B| − 1 and then we get |W | ≤ (s− |I0|+ 1) ·m− 1 =
(t+ 1) ·m− 1 ≤ am− 1 < k, a contradiction that ends the proof.

We will show that ψk(H) = pk. First note that by Lemma 11 we get ψk(H) ≤ pk,

since the set S = {v(i)m : 1 ≤ i ≤ pk} is a k-PVC for H as there are only a − 1
vertices in M \ S. Now let T be an arbitrary set of no more than pk − 1 vertices
from H. Without loss of generality we can assume that T has no vertices in common
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with paths P (1), . . . , P (a) (recall that the number of P (i) is pk + a− 1). It is easy to

observe that joining the paths v
(1)
1 − . . .−v

(1)
2m−1, v

(2)
m −v(2)m+1− . . .−v

(2)
2m−1, . . . , v

(a)
m −

v
(a)
m+1 − . . . − v

(a)
2m−1 results in a path on 2m − 1 + (a − 1)m = (a + 1)m − 1 ≥ k

vertices. Consequently T is not a k-PVC for H and ψk(H) > pk− 1, so we must have
ψk(H) = pk.

Now we deal with the m-path number. Take pm− (pk+a−1) (by assumption this
number is non-negative) disjoint paths Q(1), Q(2), . . . , Q(pm−(pk+a−1)) on m vertices

and let Q(j) = u
(j)
1 − . . .− u

(j)
m . Connect all Q(j) to the vertex v

(1)
m of P (1) by adding

edges u
(j)
1 − v

(1)
m for all j. Resulting graph G satisfies ψk(G) = ψk(H) = pk, since

S = {v(i)m : 1 ≤ i ≤ pk} is a k-PVC for G. But also ψm(G) = ψm(H)+(pm− (pk+a−
1)) = pm because at least one vertex from each P (i) and each Q(j) must be included

in the minimum m-PVC of G and clearly M ∪ {u(j)1 : j = 1, 2, . . . , pm − (pk + a− 1)}
is a m-PVC for G.

4. Path sequences for small graphs

In this section we give some properties of path sequences concerning graphs with
small number of vertices. First problem which arises naturally is the question whether
equality of path sequences implies graph isomorphism. This is true for graphs with
at most three vertices but false in general, as shown by the proposition below.

Proposition 12 For any n ≥ 4 there exist (connected) graphs G, H on n vertices
such that ψ(G) = ψ(H) but G and H are not isomorphic.

Proof. Let G be a graph and v a vertex in G. By Gv,k we understand a graph
obtained from G by adding k new vertices {u1, . . . , uk} and edges {vu1, vu2, . . . , vuk}
to G. Now, let u ∈ V (C4) and let v ∈ V (K4 − e) be of degree 3 and consider graphs
G = (C4)u,n−4 and H = (K4 − e)v,n−4. Obviously G and H are not isomorphic but

ψ(G) = ψ(H) =

{
(4, 2, 2, 1) if n = 4,
(n, 2, 2, 1, 1, 0, . . . , 0) for n ≥ 5.

Before going further we state the following definition:

Definition 13 Let (p1, . . . , pn) be a sequence of non-negative integers. Put

m(p1, . . . , pn) := number of non-isomorphic connected graphs G
on n vertices such that ψ(G) = (p1, . . . , pn).

We will call this number the path multiplicity of a sequence (p1, . . . , pn). A sequence
with nonzero path multiplicity will be called realisable, i.e. (p1, . . . , pn) is realisable if
there exists a connected graph G with ψ(G) = (p1, . . . , pn). Moreover if at least one
of the graphs G satisfying ψ(G) = (p1, . . . , pn) is a tree, a bipartite graph, etc. we will
say that the sequence is realisable by a tree, a bipartite graph, etc.
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Tables 1 and 2 give realisable sequences and their path multiplicities for connected
graphs on n = 5, 6 and 7 vertices (for smaller n all values are easily found ‘by hand’).
These numbers were generated using a computer program written by the authors –
source code is available at [20]. The lists of non-isomorphic connected graphs and
trees were obtained by the Mathematica package [19] and data from the web page
[14]. Note: sequences realisable by trees are marked with ∗.

Table 1. Path sequences for all connected graphs on 5 vertices (9 sequences,
21 graphs) and 6 vertices (20 sequences, 112 graphs).

Sequence Multiplicity
∗(5,1,1,0,0) 1
∗(5,2,1,1,0) 2
∗(5,2,1,1,1) 1
(5,2,2,1,1) 5
(5,3,1,1,1) 2
(5,3,2,1,1) 2
(5,3,2,2,1) 5
(5,3,3,2,1) 2
(5,4,3,2,1) 1

Sequence Mult. Sequence Mult.
∗(6,1,1,0,0,0) 1 (6,3,3,2,1,1) 5
∗(6,2,1,1,0,0) 2 (6,3,3,2,2,1) 14
∗(6,2,2,1,0,0) 1 (6,4,2,1,1,1) 4
∗(6,2,2,1,1,0) 10 (6,4,2,2,1,1) 1
∗(6,3,1,1,1,0) 3 (6,4,2,2,2,1) 8
(6,3,2,1,1,0) 3 (6,4,3,2,1,1) 2
∗(6,3,2,1,1,1) 9 (6,4,3,2,2,1) 7
(6,3,2,2,1,0) 1 (6,4,3,3,2,1) 9
(6,3,2,2,1,1) 22 (6,4,4,3,2,1) 3
(6,3,2,2,2,1) 6 (6,5,4,3,2,1) 1

Table 2. Path sequences for all connected graphs on 7 vertices (50 sequences,
853 graphs).

Sequence Multiplicity Sequence Mult. Sequence Mult.
∗(7,1,1,0,0,0,0) 1 (7,3,3,2,2,1,0) 1 (7,4,4,3,2,1,1) 6
∗(7,2,1,1,0,0,0) 2 (7,3,3,2,2,1,1) 87 (7,4,4,3,2,2,1) 24
∗(7,2,2,1,0,0,0) 1 (7,4,1,1,1,0,0) 3 (7,4,4,3,3,2,1) 36
∗(7,2,2,1,1,0,0) 16 (7,4,2,1,1,1,0) 6 (7,5,3,1,1,1,1) 3
∗(7,3,1,1,1,0,0) 4 (7,4,2,1,1,1,1) 3 (7,5,3,2,1,1,1) 4
∗(7,3,2,1,1,0,0) 5 (7,4,2,2,1,1,0) 1 (7,5,3,2,2,1,1) 1
∗(7,3,2,1,1,1,0) 21 (7,4,2,2,1,1,1) 25 (7,5,3,2,2,2,1) 18
∗(7,3,2,1,1,1,1) 2 (7,4,2,2,2,1,1) 39 (7,5,3,3,2,1,1) 1
(7,3,2,2,1,0,0) 1 (7,4,3,1,1,1,0) 1 (7,5,3,3,2,2,1) 8
(7,3,2,2,1,1,0) 39 (7,4,3,1,1,1,1) 12 (7,5,3,3,3,2,1) 22
(7,3,2,2,1,1,1) 4 (7,4,3,2,1,1,0) 3 (7,5,4,3,2,1,1) 2
(7,3,2,2,2,1,0) 1 (7,4,3,2,1,1,1) 20 (7,5,4,3,2,2,1) 7
(7,3,2,2,2,1,1) 9 (7,4,3,2,2,1,1) 69 (7,5,4,3,3,2,1) 19
(7,3,3,1,1,1,0) 3 (7,4,3,2,2,2,1) 81 (7,5,4,4,3,2,1) 15
(7,3,3,1,1,1,1) 8 (7,4,3,3,2,1,1) 46 (7,5,5,4,3,2,1) 3
(7,3,3,2,1,1,0) 10 (7,4,3,3,2,2,1) 129 (7,6,5,4,3,2,1) 1
(7,3,3,2,1,1,1) 10 (7,4,3,3,3,2,1) 20 - -

From Tables 1 and 2 we can draw some observations. First of all notice that from
the basic properties of path numbers it follows that m(n, n − 1, n − 2, . . . , 1) = 1
(realisable by Kn) and that m(n, 1, 1, 0, . . . , 0) = 1 (realisable by K1,(n−1), for n ≥ 3).
However there are many other path sequences with multiplicity one, for example
m(5, 2, 1, 1, 1) = 1.
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Proposition 12 shows that equality of path sequences for two graphs does not
imply that they are isomorphic. The tables above show that we can even have that
ψ(G) = ψ(T ) for some tree T and some non-tree graph G.

However if T1, T2 are trees with n < 7 vertices, then it follows from Tables 1 and
2 (and the number of non-isomorphic trees on n vertices) that ψ(T1) = ψ(T2) ⇐⇒
T1 ' T2. But this is also not true in general, as the following proposition shows.

Proposition 14 For any n ≥ 7 there exist trees T1, T2 on n vertices such that
ψ(T1) = ψ(T2) but T1 and T2 are not isomorphic.

Proof. Assume first that n = 7 and take the following trees:

W

T1

W

T2

that are clearly not isomorphic and have path sequences equal to (7, 2, 2, 1, 1, 0, 0). For
n > 7 it suffices to attach additional vertices to w (consider (T1)w,n−7 and (T2)w,n−7
in notations of Proposition 12) to obtain non-isomorphic trees with path sequences
(n, 2, 2, 1, 1, 0, . . . , 0).

By analysing the data for graphs with up to 9 vertices (path sequences were cal-
culated with the help of the computer program [20]) we state the following conjecture
concerning the existence of a Hamilton path in G (that is clearly equivalent to the
condition ψn(G) = 1). According to our knowledge this conjecture has not been
studied yet.

Conjecture 15 Let G be a connected graph on n ≥ 2 vertices. Then the following
implication holds

ψn−1(G) = 2⇒ ψn(G) = 1

By setting k = n− 1 in the following remark, one observes that it is not necessary
to formulate Conjecture 15 for disconnected graphs.

Remark 16 If G is a graph on n vertices such that ψk(G) = n − k + 1 for some
2 ≤ k ≤ n, then G is connected.

Proof. Let n ≥ 2 and let Hi, i ∈ I be the connected components of G. Since ψk(Hi) ≤
|Hi| − k + 1, we get ψk(G) =

∑
i∈I ψk(Hi) ≤

∑
i∈I(|Hi| − k + 1) = n − (k − 1) · |I|.

Now if ψk(G) = n− k + 1, then n− k + 1 ≤ n− (k − 1) · |I|. Since k ≥ 2, equality is
possible only for |I| = 1, i.e. when G is connected.

It is straightforward to see that if G is a graph on n vertices and ψ2(G) is maximum
possible (i.e. n − 1), then G is necessarily isomorphic to Kn. It is not the case for
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ψk(G) and k > 2, however Conjecture 15 implies the following interesting property
of path sequences.

Theorem 17 Let G be a graph on n ≥ 3 vertices and 2 ≤ k < n.
If Conjecture 15 holds for all connected graphs with at most n vertices, then

ψk(G) = n− k + 1 implies ψj(G) = n− j + 1 for all j such that k < j ≤ n.

Proof. It is enough to prove the following claim for all graphs G on n ≥ 3 vertices
and all m such that 2 ≤ m < n: if Conjecture 15 holds for all connected graphs with
at most n vertices, then ψm(G) = n−m+ 1 implies ψm+1(G) = n−m.

We proceed by induction on n. It easy to check the claim for n = 3. So assume
that n ≥ 4 and fix m ∈ {2, 3, . . . , n − 1}. Let G be a graph on n vertices such that
ψm(G) = n−m + 1 and ψm+1(G) = n−m− t, with some t ≥ 0. We need to prove
that t = 0. Observe that G is connected by Remark 16 and if m = n − 1, then the
result follows by the validity of Conjecture 15. So assume that m < n− 1 and put S
to be a minimum (m+ 1)-PVC for G. There are two cases to consider:

(a) S 6= ∅. Choose v ∈ S and let G′ = G−v. Lemma 3 gives n−m ≤ ψm(G′) ≤ (n−
1)−m+1 and therefore ψm(G′) = n−m. By the induction hypothesis ψm+1(G′) =
n − m − 1, but due to Lemma 3 we obtain that ψm+1(G′) = ψm+1(G) − 1 =
n−m− t− 1, so t = 0.

(b) S = ∅. This case cannot occur and the proof is as follows: let w be any vertex of
G, put G′ = G−w and observe that by Lemma 3 we get ψm(G′) = n−m, so by the
induction hypothesis ψm+1(G′) = n−m− 1. But 0 ≤ ψm+1(G′) ≤ ψm+1(G) = 0
and consequently n−m− 1 = 0, which is impossible since m < n− 1.

We now present a lemma which will be useful in giving a direct proof of Conjecture
15 for graphs with no more than 7 vertices. Note that the points (2)–(4) follow from
Lemma 2.2 of [5], however we include them here with a proof.

Lemma 18 Let G = (V,E) be a connected graph on at least four vertices such that
V = {p1, . . . , pn−1, q}, N(q) = {pi1 , . . . , pit} and p1 − . . . − pn−1 is a path in G. If
ψn−1(G) = 2 and ψn(G) = 0, then

(1) d(p1) ≥ 2 and d(pn−1) ≥ 2.

(2) p1pn−1 /∈ E, qp1 /∈ E, qpn−1 /∈ E and if qpi ∈ E, then qpi+1 /∈ E for all
i ∈ {2, . . . , n− 2}.

(3) p1pij+1 /∈ E and pn−1pij−1 /∈ E for all j ∈ {1, . . . , t}.

(4) p1pij−1 /∈ E, for all j such that ij > min{i1, . . . , it} and pn−1pij+1 /∈ E for all j
such that ij < max{i1, . . . , it}.

Proof. To see (1) suppose to the contrary that d(p1) = 1. We show that S = {p2} is
a (n − 1)-PVC for G. This follows from the fact that any path on k vertices which
avoids p2 must also avoid p1 and therefore k ≤ n − 2. The second case is proved
analogously.

Now, the first part of (2) is obvious (in any case we get a path on all vertices in
G, which contradicts ψn(G) = 0). For the second, if such an i exists, we have a path
p1 − . . .− pi − q − pi+1 − . . .− pn−1.



249

As far as (3) is concerned, suppose first that p1pij+1 ∈ E for some ij such that
pij ∈ N(q). Then we have the following path on n vertices in G: q − pij − pij−1 −
. . . − p1 − pij+1 − pij+2 − . . . − pn−1. If now pn−1pij−1 ∈ E, then we get that the
following path on n vertices: p1 − . . .− pij−1 − pn−1 − . . .− pij − q exists.

To prove (4), let r = min{i1, . . . , it} and suppose that p1pij−1 ∈ E. Then we have
the following path on n vertices in G: pn−1 − pn−2 − . . .− pij − q− pr − pr−1 − . . .−
p1 − pij−1 − pij−2 − . . .− pr+1. The second case follows by symmetry argument.

Corollary 19 Let G = (V,E) be a connected graph on at least four vertices such
that V = {p1, . . . , pn−1, q} and p1 − . . . − pn−1 is a path in G. If ψn−1(G) = 2 and
ψn(G) = 0, then

2 ≤ d(q) ≤
⌈
n− 3

2

⌉

Proof. Firstly notice that d(q) ≥ 2, since if d(q) = 1 and qu ∈ E, then S = {u} is a
(n− 1)-PVC. To see this note that any path P in G that avoids u must also avoid q
and so |P | < n− 1. As for the second inequality, it follows from Lemma 18.(2) since
for every i ∈ {2, . . . , n− 2} at most one of the edges qpi, qpi+1 is in E.

The above facts allow us to give a direct proof of Conjecture 15 for graphs with
no more than 7 vertices. Our reasoning is ‘by considering cases’ – unfortunately we
were unable to find a more general approach.

Theorem 20 Let G = (V,E) be a connected graph on n vertices, with 2 ≤ n ≤ 7.
Then Conjecture 15 holds for G, i.e.

ψn−1(G) = 2⇒ ψn(G) = 1

Proof. The theorem holds true for n = 2 and n = 3, with complete graphs K2 and
K3 being the only cases to verify. So we can assume that n ≥ 4.

It is sufficient to prove that the existence of a connected graph that satisfies
ψn−1(G) = 2 and ψn(G) = 0 leads to a contradiction. Throughout we consider a
graph G = (V,E) with V = {p1, . . . , pn−1, q} and assume that p1 − . . . − pn−1 is a
path in G.

Notice that if n = 4 or n = 5, then
⌈
n−3
2

⌉
< 2 and Corollary 19 gives 2 ≤ d(q) < 2,

a contradiction. So we can assume that n = 6 or n = 7. Note that in both cases we
get d(q) = 2 by Corollary 19.

Now let G be a connected graph with 6 vertices such that ψ5(G) = 2, ψ6(G) = 0
and d(q) = 2. Due to Lemma 18 we only need to consider the case when qp2, qp4 ∈ E
- but then the set S5 = {p2} is a 5-PVC. To see this let us assume that there exists a
path P on 5 vertices p1, p3, p4, p5, q (in any order). Using again Lemma 18 we obtain
that d(p1) = 2,p1p4 ∈ E and p3p5 /∈ E. It follows that p2p3 and p3p4 are the only two
edges containing p3. Consequently P must start with p3 and it is easy to see that we
cannot build a path avoiding p2 longer than p3 − p4 − x where x ∈ {q, p1, p5}, which
contradicts P having 5 vertices.

Let us now assume that n = 7 and there exists a graph G such that ψ6(G) = 2
and ψ7(G) = 0 with d(q) = 2. Because of Lemma 18 and symmetries we only need
to consider two cases: qp2, qp5 ∈ E and qp2, qp4 ∈ E. Assume the first case – by
Lemma 18 we get that d(p1) = 2 and p1p5 ∈ E. But now S6 = {p2} is a 6-PVC for
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G: this follows from the fact that there is no path on 6 vertices which avoids p2 in G.
Indeed, if such a path exists, then it is of the form q − p5 − x1 − x2 − x3 − x4 where
xi 6= p1 for i = 1, 2, 3, 4 – a contradiction.

Let us now proceed with the case qp2, qp4 ∈ E. By Lemma 18 we must have that
d(p1) = 2 and p1p4 ∈ E. But then again S6 = {p2} is a 6-PVC for G. To see this,
notice that we only need to consider paths of the form q − p4 − x1 − x2 − x3 − x4. If
such a path omits p2, then we cannot have x1 = p1 and so we get xi ∈ {p3, p5, p6} for
i = 1, 2, 3, 4 – a contradiction.

As a consequence of the above and Theorem 17 we get

Corollary 21 Let G be a graph on n vertices with 3 ≤ n ≤ 7 and let 2 ≤ k < n. If
ψk(G) = n− k + 1, then ψj(G) = n− j + 1 for all j such that k < j ≤ n.
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