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Grzegorz HERMAN

COMPLEXITY OF COVER-PRESERVING

EMBEDDINGS OF BIPARTITE ORDERS

INTO BOOLEAN LATTICES

A b s t r a c t. We study the problem of deciding, whether

a given partial order is embeddable into two consecutive layers of

a Boolean lattice. Employing an equivalent condition for such em-

beddability similar to the one given by J. Mittas and K. Reuter [5],

we prove that the decision problem is NP-complete by showing

a polynomial-time reduction from the not-all-equal variant of the

Satisfiability problem.

.1 Introduction

We study the problem of deciding, whether a given partial order of height

one is a subdiagram of a Boolean lattice. Questions of embeddability are

important for compression of graph-like data structures: if a structure to be

compressed is embeddable into some highly-regular structure (of possibly
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different kind), the embedding can be used to transfer the encoding of data

into a realm of structures which can be compressed better or faster. To

demonstrate this, consider a partial order (P,≤) with n elements (and thus

having up to Θ(n2) edges and requiring possibly Θ(n2) bits to encode). If P

is embeddable into (i.e., isomorphic to a subdiagram of) layers k and k+ 1

of a Boolean lattice, we can employ this fact to provide a space-efficient

encoding of P . We encode each connected component of P separately. We

first encode the embedding of one of its maximal elements x (requiring

O(k logm) bits, where m is the size of the component being encoded).

Then follows a tree of shortest paths from x to other elements, with edges

labelled by the set differences of the embeddings of their endpoints (each

vertex requires O(logm) bits). The complete representation from which P

can be easily obtained takes only O(n log n) bits in total.

Another area where embeddability plays an important role is modelling

parallel computer architectures, in particular the ability of one network

structure to faithfully simulate another [3]. A good simulation is said to

exist when adjacent processors in the guest (simulated) network can be

mapped to reasonably close processors in the host network. Here, Boolean

lattices correspond to networks forming binary hypercubes, known to have

excellent connectivity properties (logarithmic diameter with only logarith-

mic node degree).

The problem of deciding whether a partial order is embeddable into

a hypercube has been shown to be NP-complete [2]. However, the em-

beddings considered did not have to be cover-preserving. With the cover-

preservation requirement added, the problem was successfully tackled by

M. Wild [4] with the use of projectivities. His method seems to fail for

orders of height one – the particular variant we study here. This variant

was analyzed by J. Mitas and K. Reuter [5]. They showed, that embed-

dability cannot be characterized by a finite family of forbidden suborders.

Moreover they formulated an equivalent condition for embeddability, given

in terms of edge coloring of the comparability graph.

In this paper, we first provide a formal definition of an admissible col-

oring, together with some intuitions behind it (Section 2). Then we show,

that the existence of such coloring characterizes exactly the embeddable

orders (Section 3). Finally, we prove, that the embeddability problem is

NP-complete, by showing a polynomial-time reduction from a variant of

Satisfiability problem.
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.2 The Coloring

Let us start by formally defining the problem:

Definition 2.1. (Embeddability problem) We are given a partial order

(P,≤).

We want to know if there exist: a set X, an integer k and a function

f : P →
(
X

k

)
∪
(

X

k + 1

)
such, that p ≤ q iff f(p) ⊆ f(q) whenever p, q ∈ P .

The symbol
(
X
k

)
is used here for the family of all k-element subsets of the

set X.

Following J. Mitas and K. Reuter, we will characterize embeddable

orders by the properties of their comparability graph, i.e., a graph whose

vertices are the elements of the set X, and there is an edge between u and

v iff u < v or v < u. It is obvious, that for an embedding to exist, the order

must have height of no more than one. In other words, its comparability

graph must be bipartite. It is also clear, that if we can find an embedding

for each connected component of P , then we can create one for the entire

order. Both checking whether a graph is bipartite and finding connected

components are linear time problems. Therefore, for the rest of this paper,

we assume that the order given is bipartite and connected. Furthermore,

if there are at least two elements in the order, each element must be either

minimal or maximal (it cannot be both).

Consider any suborder of two consecutive layers of a Boolean lattice, i.e.,

a subset of
(
X
k

)
∪
(

X
k+1

)
for some X and k, ordered by inclusion. Whenever

there is an edge {u, v} in the comparability graph, its endpoints must be

comparable subsets of X, of cardinality k and k + 1. Therefore, they must

differ by a unique element of X, which we call the color of {u, v}. Let us

briefly analyze the properties of such coloring.

Imagine a path Γ = x0x1 . . . xn, beginning at a maximal vertex x0 (the

case for x0 being minimal is symmetric). The path alternates between

maximal vertices x2i of cardinality k + 1 and minimal vertices x2i+1 of

cardinality k. Walking along the path, we therefore alternate between

removing and adding the edge colors to the set associated with the current

vertex. Note the following properties of such a walk:
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• If we encounter the same color α multiple times along the path, the

actions undertaken with α must alternate between addition and re-

moval (an element removed from the set cannot be removed again

until it has been added back). As the actions are tied to the parity

of the distance from x0 to the edge considered, the edges of color α

must alternate between even and odd distances from x0.

• If we ever come back to x0, i.e., end up with the same set, we must

have seen each color an even number of times. Moreover, this is an

if-and-only-if condition.

• If the endpoints x0, xn of Γ are connected with an edge, there must

be exactly one color which has been present on Γ an odd number of

times (exactly the color of the edge {x0xn}). This condition is also an

if-and-only-if, because if we have two sets whose symmetric difference

is a singleton, one of them must be a subset of the other.

It turns out, that the above set of properties is, in a sense, complete:

we will show that if a partial order can be colored so as to satisfy them, it

must be embeddable.

Let us start with formally stating the required properties of the coloring.

We consider an undirected, connected, bipartite graph G = (V,E), E ⊆
(
V
2

)
and its edge-coloring c : E → Ω.

We denote the set of all paths by E∗:

E∗ = {x0x1 . . . xn : ∀i {xi, xi+1} ∈ E}

For each path Γ = x0x1 . . . xn ∈ E∗, we define its induced color set as

the set of colors that appear on Γ an odd number of times (here, ÷ denotes

the symmetric difference of sets; individual elements of Ω are promoted to

singleton sets as needed):

c(Γ) = c({x0, x1})÷ c({x1, x2})÷ . . .÷ c({xn−1, xn})

We begin with the weakest of the required properties:

Definition 2.2. (Consistent coloring) We say that the edge coloring c

of a graph G is consistent iff for every cycle Γ ∈ E∗ we have c(Γ) = ∅
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If the coloring c is consistent, then for any two vertices u, v ∈ V and

two paths Γ,∆ from u to v we must have c(Γ) = c(∆)—otherwise by

joining these paths we would get a cycle with a nonempty induced color

set. Therefore, for a consistent coloring of a connected graph we can define

the color distance of vertices u, v ∈ V as:

c(u, v) = c(Γ), where Γ is any path that joins u and v

Stating the two if-and-only-if properties is now simple:

Definition 2.3. (Totally consistent coloring) A consistent edge coloring

c of G is totally consistent iff for u, v ∈ V :

|c(u, v)| = 0 implies u = v

|c(u, v)| = 1 implies {u, v} ∈ E

Defining the remaining property requires a bit more work: we need

some means of relating the parity of the length of the path to the parity of

the number of times a specific color α appears on it. For connected graphs

it is enough to consider only half of the cases, for example for those paths

Γ where α appears an odd number of times, i.e., α ∈ c(Γ).

For each vertex v ∈ V we define the odd and even subsets of the color

set:

O(v) = {α ∈ Ω : α is the color of the last edge of some

odd-length path Γ starting in v and α ∈ c(Γ)}
E(v) = {α ∈ Ω : α is the color of the last edge of some

even-length path Γ starting in v and α ∈ c(Γ)}

Note that the above definitions try to capture the elements which must

be present in and absent from the set associated with the vertex v (with one

of the two interpretations depending on whether v is maximal or minimal).

The full property of the coloring can now be stated as follows:

Definition 2.4. (Admissible coloring) An edge coloring c is admissi-

ble1 iff it is totally consistent and O(v) ∩ E(v) = ∅ for each v ∈ V .

1Our definition of admissible coloring is equivalent to the one used by J. Mitas and

K. Reuter [5]
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.3 A Characterization

We now turn to the formal proof of the characterization of embeddable

orders. Our argument is a slight modification of the one in [5], employing

our definition of admissible coloring.

Theorem 3.1. (Characterization of embeddable orders) A connected,

bipartite partial order (P,≤) is embeddable into two consecutive layers of

some Boolean lattice if and only if there exists an admissible edge coloring

of its comparability graph.

Proof. Let (P,≤) be an embeddable order, and this fact be witnessed

by X, k and f . We define a coloring c by putting

c({u, v}) = f(u)÷ f(v),

for each edge u < v ∈ P .

Then, for each path x0x1 . . . xn ∈ E∗ we have

c(x0x1 . . . xn) = c({x0, x1})÷ . . .÷ c({xn−1, xn})
= f(x0)÷ f(x1)÷ f(x1)÷ . . .÷ f(xn−1)÷ f(xn−1)÷ f(xn)

= f(x0)÷ f(xn),

which depends exclusively on the endpoints x0 and xn. Thus, the coloring is

consistent, and we have c(u, v) = f(u)÷f(v) for all u, v ∈ P . Consequently,

|c(u, v)| = 0 =⇒ f(u) = f(v)

=⇒ u = v,

and

|c(u, v)| = 1 =⇒ |{f(u)÷ f(v)}| = 1

=⇒ f(u) ⊂ f(v) or f(v) ⊂ f(u)

=⇒ u < v or v < u.

This means, that the coloring c is totally consistent.

Now take a vertex v ∈ P with O(v)∩E(v) 6= ∅. Then for α ∈ O(v)∩E(v)

there are paths vx1 . . . xn and vy1 . . . ym with

c({xn−1, xn}) = α ∈ c(vx1 . . . xn) and 2 - n,
c({ym−1, ym}) = α ∈ c(vy1 . . . ym) and 2 | m.
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Since α ∈ c(vx1 . . . xn) ∩ c(vy1 . . . ym), we have

α /∈ c(xnxn−1 . . . x1vy1 . . . ym) = f(xn)÷ f(ym).

Hence,

xn is maximal in P ⇐⇒ α ∈ f(xn)

⇐⇒ α ∈ f(ym)

⇐⇒ ym is maximal in P.

Therefore xn and ym must both be maximal or minimal elements of P .

But this is not possible, as the length of the path xnxn−1 . . . x1vy1 . . . ym is

odd. We know then that our assumption that O(v) ∩ E(v) 6= ∅ must have

been false, and thus the coloring c is admissible.

We now turn into the other direction of the proof and assume that we

are given an admissible edge coloring c : E → Ω of P ’s comparability graph.

We then define

X = Ω,

f(v) =

{
E(v), if v is minimal in P ,

O(v), if v is maximal in P .

Now for u, v ∈ P , u < v, α = c({u, v}) we have:

u is minimal in P and α /∈ f(u) = E(u),

v is maximal in P and α ∈ f(v) = O(v).

Let us consider another color β 6= α. We can see, that if β ∈ f(u) =

E(u) is witnessed by an even length path ux1 . . . xn ∈ E∗ with

c({xn−1, xn}) = β ∈ c(ux1 . . . xn),

then the augmented path vux1 . . . xn ∈ E∗ has odd length and witnesses

the fact that β ∈ O(v) = f(v). Analogously, one can show that each β 6= α

that lies in f(v) must be in f(u). This yields f(v) = f(u) ∪ c({u, v}) and,

finally, |f(v)| = |f(u)|+ 1.

The comparability graph is connected, and therefore there exists k such

that

|f(v)| =

{
k, if v is minimal in P ,

k + 1, if v is maximal in P .
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We now show that ∀u, v ∈ P : f(u) ÷ f(v) = c(u, v). This follows by

induction on the distance between u and v (remember, that for u < v, we

have f(u)÷ f(v) = {c({u, v})}).
Hence, by total consistency of c, we get

f(u) ⊆ f(v) =⇒ | (f(u)÷ f(v)) | ≤ 1

=⇒ |c(u, v)| ≤ 1

=⇒ {u, v} ∈ E or u = v

=⇒ u ≤ v,

which means that f is a correct embedding of P into
(
X
k

)
∪
(

X
k+1

)
. �

.4 Main Result

Having shown that embeddability is equivalent to the existence of an ad-

missible coloring, we know that checking embeddability is equivalent to

checking colorability. This allows us to prove that both these problems are

NP-complete, by showing one of them to be in NP, and the other to be NP-

hard. Interestingly, we were not able to find any direct proof of either the

hardness of embeddability, or the solvability of colorability—for the latter,

note that even verifying whether a given coloring is admissible seems to

require checking all paths in the graph, and there are exponentially many

of them.

We begin with the simple part:

Lemma 4.1. The embeddability problem is in NP.

Proof. We are given a partially ordered set (P,≤) with n elements.

If it is an embeddable one, there must exist a proper embedding with the

space X having no more than n elements. Thus, a description of proper

embedding needs no more than O(n2 log n) bits. Checking that the func-

tion described is indeed a correct embedding is trivially a polynomial time

problem. From the above it follows that the embeddability problem is

polynomially verifiable, and thus it belongs to the class NP. �

We will employ a standard technique of proving NP-hardness, by pre-

senting a polynomial-time reduction from a known hard problem. Here, we

have chosen the following variant of Satisfiability:
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Definition 4.2. (NAESAT) NAESAT (“not-all-equal Satisfiability”)

is a decision problem, with an instance being a logical formula having the

form:

C1 ∧ C2 ∧ . . . ∧ Ck

built over a finite set of variables X = {x1 . . . xn}, with each clause Ci

constructed from exactly three literals (variables or their negations) as

(li1 ∨ li2 ∨ li3) ∧ ¬(li1 ∧ li2 ∧ li3).

All literals in a clause must come from distinct variables.

The question is: is the given formula satisfiable?

It has been proven by T.J. Shaefer [1], that the NAESAT problem is

NP-complete.

Our main contribution is the following theorem:

Theorem 4.3. The NAESAT problem reduces polynomially to the prob-

lem of existence of admissible coloring.

We will explicitly provide the reduction—an algorithm constructing a

graph for a given instance of NAESAT. As is typical for reductions from

Satisfiability, the resulting graph will consist of gadgets representing in-

dividual variables and clauses, joined in such a way as to guarantee the

equivalence between the satisfiability of the formula and the colorability of

the whole graph.

The definition of admissible coloring is, however, non-local: it talks

about the properties of the whole graph, not of individual vertices and

edges (or their small neighborhoods). Therefore, to make the construction

modular and the proof manageable, we first provide the following technical

lemma:

Lemma 4.4 (Gluing lemma). Let (X,EX) and (Y,EY ) be two disjoint,

connected, bipartite graphs with admissible edge colorings cX : EX → ΩX

and cY : EY → ΩY . Suppose that the vertices x1, x2, . . . , xn ∈ X and

y1, y2, . . . , yn ∈ Y satisfy the following conditions:

∀i : cX(x1, xi) = cY (y1, yi), (1)

∀i : OX(xi) ∩ EY (yi) = EX(xi) ∩OY (yi) = ∅ (2)
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Let Z = {z1, . . . , zn} be a set of fresh vertices (Z ∩ (X ∪ Y ) = ∅). Then for

the graph (V,E), where

V = X ∪ Y ∪ Z,
E = EX ∪ EY ∪ {{xi, zi}, {yi, zi} : i = 1 . . . n},

there exists an admissible edge-coloring c : E → Ω, such that

Ω = ΩX ∪ ΩY ∪ {φ, ψ} with (φ, ψ /∈ ΩX ∪ ΩY ),

c |EX
= cX ,

c |EY
= cY .

Proof. First, from (1) we can easily deduce, that cX(xi, xj) = cY (yi, yj)

for all i, j. Then we define c as:

c({u, v}) = cX({u, v}) for u, v ∈ X
c({u, v}) = cY ({u, v}) for u, v ∈ Y

c({xi, zi}) =

{
φ, if |c(x1, xi)| is even

ψ, if |c(x1, xi)| is odd

c({yi, zi}) =

{
ψ, if |c(x1, xi)| is even

φ, if |c(x1, xi)| is odd

By definition, c extends both cX and cY . It remains to show that it is

admissible.

Let us consider a cycle Γ = v0v1 . . . vm−1v0 ∈ E∗. Without loss of

generality we can assume that v0 ∈ X (X and Y play symmetric roles

in the construction, and no cycle can be completely contained in Z). We

induct on the number of the points in Γ∩Z to show that c(Γ) = ∅. If there

is no such point, then Γ ⊆ X. The colorings c and cX coincide on X, and

therefore c(Γ) = ∅. If there is such a fresh point, say zi, in Γ, then there

are two possibilities:

Γ = v0 . . . xizixi . . . v0, or

Γ = v0 . . . xiziyi . . . yjzjxj . . . v0

(with i and j possibly equal).

In the first case, we modify Γ by removing zi and one of the xis. We

obtain a cycle, having obviously the same induced color set, with one fewer

point from Z in it.



COMPLEXITY OF EMBEDDINGS OF BIPARTITE ORDERS 109

In the second case, we modify Γ by replacing the fragment ziyi . . . yjzj
by an arbitrary path connecting xi to xj in X (it exists, because X is con-

nected). Knowing that cX(xi, xj) = cY (yi, yj) and c(xiziyi) = c(yjzjxj) =

{φ, ψ}, we see that the modified cycle has the same induced color set as

Γ. And, again, it uses fewer points from Z. Having considered both cases,

we know that the induced color set of any cycle in V is empty. Thus, c is

consistent.

Given vertices u ∈ X and v ∈ Y , we know that there is a path Γ in X

from u to x1, and a path ∆ in Y from y1 to v. Thus the path Σ = ∆z1Γ

connects u to v and φ, ψ ∈ c(Σ). Therefore |c(u, v)| ≥ 2.

Consider two vertices u, v ∈ V , with c(u, v) = ∅. Because of the previous

fact, they cannot belong to both X and Y . If they both lie in X, then u = v,

because cX is totally consistent. If u ∈ X and v = zi ∈ Z, then there is

a path u . . . xiv which contains exactly one edge ({xi, v}) with color φ or

ψ, and therefore c(u, v) cannot be empty. The remaining possibility is that

u, v ∈ Z, say u = zi, v = zj . Then we can form a path zixi . . . xjzj , such

that xi . . . xj lies totally in X. The only edges with colors φ or ψ on this

path are {zi, xi} and {xj , zj}. Since c(u, v) is empty, both these edges have

the same color. Then we know that c(xi, xj) = c(zi, zj) = ∅. Since cX is

totally consistent, xi = xj and, finally, u = zi = zj = v.

Now suppose that c(u, v) = {α}. Again, u and v cannot belong to both

X and Y . If they both lie in X, then {u, v} ∈ EX ⊂ E (because cX is totally

consistent). If u ∈ X and v = zi then, by creating the path u . . . xizi (with

u . . . xi contained in X) we see that α = c({xi, zi}). Then c(u, xi) = ∅ and

u = xi, which gives {u, v} = {xi, zi} ∈ E. In the last case we have u = zi,

v = zj . Again, we form a path zixi . . . xjzj . The path contains exactly two

edges with colors from the set {φ, ψ}. But they cannot have different colors,

because we assumed that |c(u, v)| = 1. Therefore c({xi, zi}) = c({xj , zj})
and, what follows from the definition of c, |c(x1, xi)| and |c(x1, xj)| are of

the same parity. But then 2 divides |c(xi, xj)| = |c(zi, zj)| = |c(u, v)| = 1.

The resulting contradiction proves that c is totally consistent.

To show that c is admissible, consider a vertex v ∈ V with O(v)∩E(v) 6=
∅. Then there exists α ∈ O(v) ∩ E(v), which has to satisfy:

∃v = u0u1 . . . um ∈ E∗ : c({um−1, um}) = α ∈ c(v0v1 . . . vm) ∧ 2 - m,
∃v = w0w1 . . . wk ∈ E∗ : c({wk−1, wk}) = α ∈ c(w0w1 . . . wk) ∧ 2 | k.

By joining these two paths we get the path Γ = um . . . u1vw1 . . . wk with
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the following properties:

first and last edge on Γ have color α (3)

α /∈ c(Γ) (4)

|c(Γ)| is odd (5)

Because at least one path with these properties exists, pick a shortest one,

say ∆. If α occurs on ∆ more than twice, then it must (by (4)) occur at

least 4 times. Looking at three subpaths, between the first and the second,

the second and the third, and between the third and the last occurrence of

α, we see that at least one of them enjoys the properties (3)-(5). Minimality

condition we put on ∆ gives that the only occurrences of α on ∆ are on

the first and the last edge.

Let ∆ go through v0v1 . . . vm (2 - m) with c({v0, v1}) = c({vm−1, vm}) =

α. We will prove by induction, that for i = 1, . . . ,m− 1 we have

vi ∈ X =⇒ (2 | i ⇐⇒ α ∈ EX(vi)) , (6)

vi ∈ Y =⇒ (2 | i ⇐⇒ α ∈ EY (vi)) .

The case of i = 1 is trivial. Suppose that the above holds for 1, 2, . . . , i

and that vi+1 ∈ X. If vi ∈ X, then augmenting the path witnessing α ∈
EX(vi) (or OX(vi)) by the edge {vi, vi+1} gives a witness for α ∈ OX(vi+1)

(or EX(vi+1), respectively). Otherwise vi ∈ Z. Then if vi−1 ∈ X then

vi+1 = vi−1 and (6) follows. The last possibility is that vi−1 ∈ Y . But then

there is a j with vi−1 = yj , vi = zj , vi+1 = xj , and we conclude (6) using

(2).

If vm−1 ∈ X, then from the above induction we have α ∈ EX(vm−1)

(because 2 | m − 1). But of course α ∈ OX(vm−1), because the edge

{vm−1, vm} has color α. This contradicts our assumption that cX is an

admissible coloring.

The case when vm−1 ∈ Y is analogous.

If vm−1 ∈ Z, then there is a j such that vm−1 = zj and (without loss of

generality) vm−2 = xj . Thus, α ∈ {φ, ψ}, and therefore either v0 or v1 is

in Z. In both cases the parity of the length of the path connecting it to zj
and the setting of α (either φ or ψ) contradict the definition of c on EZ .

Having considered all the cases, we know that a situation when O(v) ∩
E(v) 6= ∅ is impossible, which means that c is admissible and ends the

proof. �
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Equipped with this construction tool, we proceed to the proof of The-

orem 4.3.

Proof. We are given an instance of the NAESAT problem with n

variables and k clauses, as in Definition 4.2. We will show a method of con-

structing an undirected, connected, bipartite graph G = (V,E), dependent

only on this instance. Along with the construction, we will show its admis-

sible edge-coloring, under the assumption that the formula is satisfiable.

Later on, we will show that if an admissible coloring exists, the formula

must be satisfiable.

First let us set up some naming conventions:

The construction will employ three types of gadgets: an initializer,

selectors, capturing the assignment of truth values to variables, and val-

idators, ensuring satisfiability of particular clauses. Each type will receive

its one letter abbreviation (I, S and V , respectively). Multiple gadgets of

the same type will be numbered using superscripts, and specific points of

a gadget will be denoted by subscripts. Thus, by S2
A3 we will denote the

point A3 of the second selector.

For color names we will use Greek letters and integers. Colors named

with integers will be local to a single gadget (i.e., color 2 of each gadget is

different). Greek letters will denote global colors.

We will say that we make a bridge between points x1 . . . xm and y1 . . . ym
when we add fresh points z1 . . . zm and create edges {xi, zi}, {zi, yi} (this is

exactly the operation used to connect the graphs in the gluing lemma).

We begin the construction with static (i.e., independent from the given

NAESAT formula) initializer:
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A1 A4 A7

B1 B2 B3 B4 B5 B6 B7

C1 C2 C6 C7

D0 D1 D2 D3 D4 D5 D6 D7

E0 E1 E5 E6

F0 F1 F2 F3 F4 F5 F6

G0 G3 G6

γ α

β γ δ η α β

α β γ δ η α β

α β γ δ η α

β η

2

1

γ

δ

4

3

1

2

3

4

α

β

1

2

3

4

2

1

δ

η

4

3

Rows A and B form an obviously admissibly-colored subgraph, and so

do rows F and G. Coloring of row D is trivially admissible as well. It is

easy to check, that the assumptions of gluing lemma hold for point sets

(D1, D2, D6, D7) and (B1, B2, B6, B7), as well as for point sets (D0, D1,

D5, D6) and (F0, F1, F5, F6). Thus, the presented coloring of the whole

gadget is admissible.

The next gadget type is the selector:

C0 C7

D0 D1 D2 D3 D4 D5 D6 D7

E0 E7

δ

α β γ δ η α β

δ

γ/η

η/γ

η/γ

γ/η
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The coloring shown can be made admissible by setting either

c(C0, D0) = c(D7, E7) = γ,

c(D0, E0) = c(C7, D7) = η,

or

c(C0, D0) = c(D7, E7) = η,

c(D0, E0) = c(C7, D7) = γ.

We create n selectors (one for each variable), and for each of them

we create a bridge between points Si
D0 . . . S

i
D7 and ID0 . . . ID7. Given the

valuation v : X → {0, 1} of variables that satisfies the formula, we set

c(Si
C0S

i
D0) to γ iff v(xi) = 1.

We now iteratively use the gluing lemma to prove, that the graph con-

structed so far is admissibly colorable. It is not hard to see, that all as-

sumptions of the lemma hold regardless of the choice between γ and η made

above. Application of the lemma to the i-th selector creates two fresh col-

ors, say φi and ψi, used only on the bridge between the initializer and this

selector.

Now we proceed to our final gadget—the validator:

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

C0 C1 C5 C6 C10 C11

D0 D1 D5 D6 D10 D11

2 1 φi ψi 1 φk ψk 2 3

θ 1 2 ψi φi ψk φk 3 2 ψ

θ φ ψ

ψj

φj

3

φj

ψj

3 3

2

1

φ

3

2

φ φ

ψj

φj

φj

ψj

Assuming that φ, ψ, θ ∈ {γ, η}, φ 6= ψ, and that the six colors φi, ψi, φj ,

ψj , φk, ψk are pairwise different, the coloring shown is admissible (we have

checked it using a computer).

We create a validator V t for the t-th clause in the given formula. The

clause contains 3 distinct literals lt1, l
t
2 and lt3. Denote by var(l) the index

of variable used by literal l and let i = var(lt1), j = var(lt2) and k =

var(lt3). We create a bridge between vertices V t
D0, V

t
D1, V

t
D6, V

t
D5, V

t
D10,
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V t
D11 and Si

D0, S
i
C0, S

j
D0, S

j
C0, S

k
D0, S

k
C0, replacing SC0 with SE0 whenever

the corresponding variable appears negated in the clause.

Since v satisfies the formula, we know that in the clause there are two

literals with different values. We determine the colors φ, ψ and θ (chosen

from {γ, η}) depending on the valuation, by setting:

θ =

{
γ, if v(lt1) = 1

η otherwise

φ =

{
γ, if v(lt2) = 1

η otherwise

ψ =

{
γ, if v(lt3) = 1

η otherwise

If v(lt2) 6= v(lt3), then φ 6= ψ and the coloring is admissible. If v(lt2) =

v(lt3), we must have v(lt1) 6= v(lt2). We then create a mirror image of the

coloring shown above (admissible, because θ 6= φ):

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

C0 C1 C5 C6 C10 C11

D0 D1 D5 D6 D10 D11

2 1 φi ψi 3 φk ψk 2 3

θ 1 2 ψi φi ψk φk 3 2 ψ

θ φ ψ

ψj

φj

φ

φj

ψj

φ φ

1

2

1

2

3

1 1

ψj

φj

φj

ψj

In both cases, not only the obtained coloring is admissible, but it also

fulfills all assumptions of the gluing lemma (on the bridge between the val-

idator and the three selectors). Again, using the gluing lemma iteratively,

we deduce that the entire created graph is admissibly colorable.

This finishes the description of our reduction from NAESAT problem.

It also proves, that if the formula is satisfiable, then the resulting graph is

admissibly colorable.

Now we turn to the other direction of the proof and assume that the

resulting graph has an admissible coloring c.
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We will use a few consequences of the definition of admissible coloring:

on each cycle, there is an even number of edges with each color (7)

every 3 consecutive edges have different colors (8)

on each cycle with 6 vertices, the opposite edges have the same color (9)

We first look at the initializer. By (9), in any admissible coloring the

edges ID0ID1, IF0IF1, IF3IG3, IF5IF6 and ID5ID6 must have the same

color. Analogously, ID1ID2, IB1IB2, IA4IB4, IB6IB7 and ID6ID7 are all of

the same color. By (8) applied to edges ID0ID1 and ID1ID2, the above two

colors are different, and so we denote them by α and β. Colors of the edges

ID2ID3, ID3ID4 and ID4ID5 must be pairwise different and different from

α and β. Let us denote them by γ, δ and η, respectively.

Now we analyze the colors of the edges in the i-th selector. Vertices

Si
D0 . . . S

i
D7 are bridged with the initializer, and thus, by (9), the edges

between them must copy exactly the colors from the initializer. Now on

each of the 10-vertex cycles of the selector, the colors γ, δ and η must appear

exactly twice. Due to the parity constraint on the admissible coloring, edges

Si
C0S

i
C7 and Si

E0S
i
E7 must have color δ. Therefore there are exactly two

possible colorings of the selector:

c(Si
C0S

i
D0) = c(Si

D7S
i
E7) = γ,

c(Si
D0S

i
E0) = c(Si

C7S
i
D7) = η,

or

c(Si
C0S

i
D0) = c(Si

D7S
i
E7) = η,

c(Si
D0S

i
E0) = c(Si

C7S
i
D7) = γ.

We define a validation v by setting:

v(xi) =

{
1, when c(Si

C0S
i
D0) = γ

0, otherwise
(10)

Let us now move to the bridges between the selectors and the validators.

In the t-th validator, each of the edges V t
D0V

t
D1, V

t
D6V

t
D5 and V t

D10V
t
D11

is bridged with the edge Si
D0S

i
C0 or Si

D0S
i
E0 of the appropriate selector,

depending on whether the variable is negated in the particular clause. Thus,
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as the coloring is admissible, each of these edges has either color γ or η,

and it has color γ precisely when the corresponding literal is true.

To finish the proof, assume to the contrary, that the values we have

chosen for the variables do not satisfy the formula. Then they must fail to

satisfy at least one of the clauses, say Ct. This means that all three literals

in the clause Ct have the same value (true or false). What follows from

the construction of the graph, and from (9), is that in the corresponding

validator V t the edges V t
D0V

t
D1, V

t
D6V

t
D5 and V t

D10V
t
D11 have the same color.

Looking closer, we can see that the edge V t
D6V

t
D5 must have the same color

as either V t
A5V

t
B5 or V t

A6V
t
B6 (by (7), (8) and parity). In the first case, the

color passes (by (9)) to V t
A3V

t
B3 and later to V t

A1V
t
B1. But this is impossible,

as V t
B0V

t
B1 also has (by (9)) the same color as V t

D0V
t
D1. The other case leads

to a similar conflict between V t
A10V

t
B10 and V t

B10V
t
B11. This shows that the

valuation defined in (10) must satisfy the formula.

Up to this end we know that the graph created from a given NAE-

SAT formula is admissibly colorable iff the formula is satisfiable. From the

construction of the graph it is clear, that the reduction needs only poly-

nomial time. This ends the proof that NAESAT reduces polynomially to

admissible coloring problem. �

What follows from the above theorem and Lemma 4.1 is the final result

of our work:

Corollary 4.5. The problem of deciding whether a given partial order

is embeddable into two consecutive layers of some Boolean lattice is NP-

complete.
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