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A b s t r a c t

This article presents a proposal for applying neural networks to control road traffic. The proposed 
solution makes it possible to determine durations of traffic signals at intersections so that 
the waiting time for transit is as short as possible. The variability of traffic intensity on all access 
roads and between analysed intersections was taken into account. The developed concept 
was compared with a method of determining the durations of lights based on the coefficient 
of intersection readiness, and the feasibility for practical applications of the method was 
assessed.
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S t r e s z c z e n i e

W artykule przedstawiono propozycję wykorzystania sieci neuronowych w sterowaniu ruchem 
drogowym. Proponowane rozwiązanie umożliwia wyznaczanie czasów trwania sygnałów 
świetlnych na skrzyżowaniach, tak aby czas oczekiwania na przejazd był najmniejszy z możli-
wych. W analizie uwzględniona jest zmienność natężeń ruchu na  wszystkich drogach dojazdo-
wych oraz między analizowanymi skrzyżowaniami. Opracowaną koncepcję porównano z me-
todą wyznaczania czasów trwania świateł opartą na współczynniku gotowości skrzyżowania 
i scharakteryzowano możliwości praktycznego zastosowania metody.

Słowa kluczowe: sieci neuronowe, ruch drogowy, sygnalizacja świetlna
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Designations

kgc – readiness koefficient [–]
Tpc – full light cycle time [s]
Tzi – duration of green light [s]
Tzcz – duration of yellow light and yellow and red light [s]
Tpp – time for a vehicle to travel through the crossing [s]
Tsr – mean waiting time in traffic [s]
Qi – intensity of vehicles [1/60 s]
dt12 – temporary shift of signal display between crossings [s]
lpr – number of traffic lanes [–]

1. Introduction

The difficulties of vehicular road traffic are visibly onerous for all involved. Such 
phenomena are particularly severe in municipal agglomerations, where many drivers travel 
relatively short distances. This brings about a rise in exhaust emissions and excessive fuel 
consumption, both harmful to the environment. The dense road network most often found 
in municipal areas makes it possible to change direction quickly and reach any desired 
point in the city. On the other hand, the necessity for crossings decreases the capacity 
to accomodate intersecting directions of traffic, which leads directly to the formation of traffic 
jams and prolongation of travel time.

One solution applied to improve traffic capacity and to keep traffic moving is 
the construction of crossings with grade separations. However, these solutions are expensive, 
and their construction requires space, which is at a premium in the urban environment. 
Thus, crossings at grade level, with traffic controlled by signalling, are most common.

Below, a proposal for analysis of road traffic through the application of a neural network 
is presented. It was compared to analysis of the readiness coefficient presented in work [3] 
and the potential for its practical application was assessed.

2. Analysis of the coefficient of readiness for transit through intersections

Due to speed limits, organisation of traffic at crossings, the number of road lanes 
in a given direction, and the fact that cars that have stopped must resume driving, there 
is a theoretical limited number of vehicles that can travel through a given crossing within 
a unit of time. The effectiveness of signalling control at a given crossing is indicated by 
the actual number of vehicles coming from different directions that can traverse this crossing 
within a unit of time. The greater this number under given conditions of traffic variability, 
and the closer to the theoretical limit value, the more effective the control.

Due to the variability of traffic intensity over the course of a day, a week, or even 
a season, the most effective method of traffic management should be real-time continuous 
signalling control. To make this possible, it is necessary to apply systems to determine traffic 
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intensity on access roads to the crossing and to apply controls adapted to such intensities, 
so that the waiting time for travel through a crossing is kept as short as possible under given 
conditions for vehicles on all access roads.

The authors presented one form of signalling control in [3], proposing a method 
maximizing the coefficient of readiness determined for a single crossing. In this method, 
the duration of green lights is determined based on the maximisation of the crossing’s 
readiness coefficient, which ensures minimisation of the mean waiting time for travel by 
vehicles heading in both directions. An additional condition was assumed: mean waiting 
times should be equal in both directions. The total coefficient of crossing readiness is the sum 
of coefficients for individual traffic directions, according to dependency [3]:
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where:
Tpc – full light cycle time (constant),
TziA – duration of green light in traffic direction A,
TziB – duration of green light in traffic direction B,
TsrA – mean waiting time in traffic direction A,
TsrB – mean waiting time in traffic direction B,
tzcz – duration of yellow light and yellow and red light,
C – time constant, e.g. C = 3600 [s],
nA(C) – intensity of vehicular traffic in traffic direction A relative to constant C,
nB(C) – intensity of vehicular traffic in traffic direction B relative to constant C,
lprA – number of traffic lanes in direction A,
lprB – number of traffic lanes in direction B,
tpp – time for a vehicle to travel through the crossing.

To solve the optimisation problem at assumed values of vehicular traffic intensity (n(C)), 
the duration of green lights may be determined for intersecting traffic directions A and B [3].

In actual conditions, it is frequently observed that the formation of traffic jams does not 
only concern one crossing, but two or more. In this way, characteristic areas with significantly 
more difficult traffic and increased transit time are formed. To keep traffic moving to 
the extent possible in such an area, the need to consider traffic intensity and signaling 
at several adjacent crossings seems to be justified.

The computational model proposed below considers not one but two crossings as well 
as the number of vehicles arriving at them, constituting an introduction to the development 
of the problem involving a greater number of crossings. The duration of the appropriate 
signals determined according to the model makes it possible to minimise waiting times for 
transit through both crossings, under given conditions of traffic intensity, for all arriving 
vehicles. Such a solution makes it possible to improve traffic flow in the entire area, not only 
at one crossing.
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In real conditions, both randomness and periodicity play a part in the variability of traffic 
intensity [1, 2]. To determine all traffic possibilities and find optimal solutions for them 
through signal control is difficult. Simplified solutions, based on the development of several 
control programmes for a given crossing, can be encountered in traffic control; such solutions 
are activated according to the traffic intensity or time of day [1].

The application of neural networks makes it possible to account for variability 
and randomness of traffic without first finding solutions for all possible scenarios, and 
to determine optimal durations for signals.

3. Characteristics of the method

A concept for signal control using artificial neural networks is presented below. 
The implementation of the proposed solution should enable easy, continuous, and fluid 
signal control in a given area, so that the transit time through this area for increased 
and variable traffic intensity can be reduced as much as possible.

The crossings presented in figure 1 include only one traffic direction for the main 
road and access for vehicles from subordinate roads only from the right side of this road. 
For the opposite direction on the main road, the situation can be considered analogously 
by accounting for the appropriate intensity of vehicular traffic on the main road and access 
roads which are opposite to their counterparts on Fig. 1. The computational model remains 
unchanged, except that the intersection marked 1 is marked 2 for the opposite direction, while 
intersection 2 becomes intersection 1. This model will still not account for conditional turns 
or left turns; however, the developed concept has broad possibilities for further development 
and improvement, which may lead to the full reflection of the nature of traffic in a given area 
and the determination of optimal control in subsequent steps. The first version of the solution 
presented here is provisional, and only after it has been positively verified will it be subjected 
to further modifications.

The intersection system accepted for analysis is shown in the graphic below.

Fig. 1. Schematic of the intersection system accepted in the computing model
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Because the proposed model is a simplification of actual road traffic, it is necessary 
to define specific assumptions:
– the total duration of the green and red light at each intersection is equal to 120 [s] (a yellow 

light is equivalent to a red light, in accordance with valid road traffic regulations) in both 
directions,

– optimisation is conducted according to the criterion of the minimum mean value of transit 
time of vehicles arriving from 3 directions over a time of 30 [min.],

– the distance between intersections is 200 [m],
– the main road is one-way, with one lane, and cars arriving from the two subordinate roads 

must turn right,
– conditional turns are not taken into consideration.

In the conducted simulations of vehicular traffic, the following are variable values:
– Q1 – intensity of vehicles arriving from starting point 1 [1/60s],
– Q2 – intensity of vehicles arriving from starting point 2 [1/60s],
– Q3 – intensity of vehicles arriving from starting point 3 [1/60s],
– Tz1 – green light duration at crossing 1 [s],
– Tz2 – green light duration at crossing 2 [s],
– dt12 – temporary shift of signal display between crossings 1 and 2 [s].

The computer programme simulating vehicular traffic calculated the mean transit time 
of all cars for various configurations of the above variables. Given the duration of each 
simulation, it is not possible to verify all cases, so variable values are assumed at certain 
numerical intervals in successive tests. Next, time cases Tz1, Tz2, dt12 are selected for 
the minimum transit time at determined traffic intensity values Q1, Q2, Q3. 

Such a parameter set, for which a minimum mean transit time exists, has been used 
to ‘teach’ the neural network presented in Fig. 2.

Input and output data were scaled to the range (0; 1) at the beginning in order to ensure 
their homogeneity. 

The learning process was conducted using the gradient method [4–7]. It is based 
on inputting successive learning vectors into the network and adjusting weight values 
depending on the error of the obtained network response, so that in further learning steps, 

Fig. 2. Schematic of the artificial neural network for signal control
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the mean square error for the entire learning set decreases. The achievement of a minimum 
value, which remains unchanged during successive learning steps, means that the learning 
process has been concluded. In the analysed case, the error decreased only after the 25th 
learning step, after which its value did not change.

One of the conditions guaranteeing the efficiency of the network is the provision 
of the appropriate amount of learning data, which should be greater than twice the number 
of weights in the network. In this case, the number of data sets is equal to 100, and the number 
of variables, for 4 neurons in the hidden layer, is 28, which means that the network will 
not learn enough based on the analysed data, which in turn could cause the calculation 
of incomplete time values for signalling changes.

Following the learning process, weight values are not subject to change and become 
constant values. A network taught in this way, with defined weight values, can then be 
simulated with any input values. Simulation of an artificial neural network means that data 
vectors with any values are input and conversion takes place according to constant weight 
values. In this case, the actual number of vehicles coming from individual directions and 
on the basis of this number, signalling is controlled continuously based on traffic intensity.

The primary advantage of artificial neural networks is their ability to acquire and 
generalise, that is, to approximate data. Thus they enable the calculation of the signal changing 
time in cases of vehicular traffic intensity not found in the learning set during the learning 
process but which may occur under actual traffic conditions. This makes it possible to control 
road traffic continuously in real time, using for example, induction sensors built into the road 
to measure the number of vehicles coming from particular directions.

4. Verification and interpretation of obtained results of calculations

Calculations according to the presented method were carried out for the assumed traffic 
intensities on individual roads according to Fig. 1. The accepted numerical values are 
presented in Table 1 and in Fig. 3. It was assumed that the light cycle time at each intersection 
is equal to 120 [s].

Fig. 3. Mean square error in learning process
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T a b l e  1
Vehicular traffic intensity on individual roads

Vehicular 
traffic 

intensity
[veh./min.]

Case number

1 2 3 4 5 6 7 8 9 10 11 12

Q1 12 12 12 12 6 12 18 24 12 12 12 12

Q2 6 12 18 24 6 6 6 6 6 6 6 6

Q3 6 6 6 6 12 12 12 12 6 12 18 24

After doing the simulation calculations using the neural network (according to Fig. 2), 
results were obtained as durations of green lights in individual traffic directions, which, 
according to the presented method, should ensure the shortest mean time of transit for all 
vehicles through the analysed area from Fig. 1. The obtained results are presented in Fig. 5.

Fig. 4. Vehicular traffic intensity on individual roads accepted for calculations

Fig. 5. Green light durations determined by the neural network
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Fig. 6. Green light durations according to the readiness coefficient method

Fig. 7. Green light durations according to the neural network method
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It can be seen that the obtained results indicate the need to prolong the duration 
of the green light as vehicular traffic intensity increases in a given direction, which is 
in accordance with reality and expectations. The neural network used for calculations also 
accounted for the fact that the time of TZ2a must ensure transit of vehicles that are found 
between crossings 1 and 2, comprising streams Q1 and Q2. To obtain the effect of minimising 
waiting time for transit in this situation given the assumed distance between intersections, 
time lags between signals at intersections 1 and 2 are required (Fig. 5).

In order to compare the obtained results with the method according to the readiness 
coefficient mentioned in section 2, calculations were carried out for the case of a single 
intersection. Calculations were done for the first 8 cases according to Table 1, involving 
intensities Q1 and Q2 only, since only one crossing was being considered. The obtained results 
are presented in Fig. 6, 7 and 8.

It can be seen that the results obtained by the two computing methods are very similar. 
The maximum difference was equal to 15%. Most results differed by less than 10%. 
However, the method using the neural network is more flexible, enabling solutions for cases 
not considered earlier and the consideration of a greater number of crossings.

5. Conclusion

The traffic analysis methods presented above are two of the many ways to search for 
solutions of vehicular traffic control through signalling. Their practical applicability 
determines their efficiency. The adaptation of the presented methods to actual conditions 

Fig. 8. Results of calculations according to the readiness coefficient and neural network methods
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requires the consideration of a greater number of crossings and of intersecting two-way 
traffic.

Following analysis of the problem, practical verification of such methods and their further 
development in terms of adaptation to real conditions is warranted. The presented methods 
may be useful in the analysis and control of road traffic.
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