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Eksperymenty z zastosowaniem kombinatoryki językowej  
do klasyfikacji tekstu: dotychczasowe wnioski i implikacje  

na przyszłość

Abstract
This paper presents a meta-analysis of experiments performed with language combinatorics (LC), a novel 
language model generation and feature extraction method based on combinatorial manipulations of 
sentence elements (e.g., words). Along recent years LC has been applied to a number of text classification 
tasks, such as affect analysis, cyberbullying detection or future reference extraction. We summarize two of the 
most extensive experiments and discuss general implications for future implementations of combinatorial 
language model.
Keywords: language combinatorics, natural language processing, text classification

Streszczenie
W niniejszym artykule przedstawiono metaanalizę badań przeprowadzonych za pomocą kombinatoryki 
językowej (language combinatorics, LC), nowej metody generacji modelu języka i ekstrakcji cech, opartej 
o kombinacyjne manipulacje na elementach zdań (np. słowa). W trakcie ostatnich lat LC została zastoso-
wana do wielu zadań z dziedziny klasyfikacji tekstu, takich jak analiza afektu, wykrywanie cyberagresji lub 
ekstrakcja odniesień do przyszłych wydarzeń. W niniejszym artykule podsumowujemy dwa z najbardziej 
obszernych doświadczeń i omawiamy ogólne implikacje dotyczące przyszłych zastosowań kombinatoryj-
nego modelu języka.
Słowa kluczowe: kombinatoryka językowa, przetwarzanie języków naturalnych, klasyfikacja tekstu
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1.  Introduction

Language modeling refers to a set of basic techniques in Natural Language Processing 
(NLP). It is crucial to most of NLP applications, including final word prediction [4], language 
identification [5], information retrieval [6], speech recognition [7], machine translation [8], 
part-of-speech (POS) tagging [9], or sentiment analysis [10].

However, despite such a wide applicability, there has been little progress within the 
language modeling field itself. There exist two to three general paradigms for language 
modeling, while most of the research still applies only the most basic ones, such as bag-of-
words (BoW) model. Although modifications and some more sophisticated methods have 
been proposed (e.g., the skip-gram model), they too are bound with constraints hindering 
the thorough analysis of language phenomena. The more sophisticated methods for language 
modeling still represent a niche and are yet to be used more widely.

In this paper we analyze one of such methods called Language Combinatorics (LC) 
[11]. It addresses the limitations of previous models by defining a language pattern as any 
frequently appearing ordered combination of sentence elements. This flexible definition 
allows extracting from sentences all possible patterns, not limited to single words, as in the 
BoW model, or phrases, as in the n-gram model, but extends the extraction to sophisticated 
patterns with disjointed elements. To prove the advantage of the model, during recent several 
years we have extensively applied it to various experiments. This paper presents a meta-
analysis of findings we drew from some of them.

The outline of the paper is as follows. We describe other research related to ours 
(section 2), and explain the general idea of combinatorial language model (section 3). Next 
we summarize (section 4) and analyze the experiments in which the model has been applied 
(section 5), draw general conclusions, and discuss future applications (section 6).

2.  Related Research

The computationally simplest language model, the bag-of-words (BOW) model [12], 
considers a piece of text or document as an unordered collection of words, thus disregarding 
grammar and word order. Some researchers proposed improvements to BoW, e.g., by using 
semantic concepts instead of words (bag-of-concepts) [13], or adding word positions in 
sentences to the equation, thus retaining general information on word order (positional 
language model) [14]. Unfortunately, though one could use any general feature type to build 
a language model (e.g., concepts, parts-of-speech), order and longer element strings (e.g., 
phrases) will still be disregarded. Moreover, sentences can be of different length and any word 
can be preceded by another word. Thus the position of a word in sentence is not a constant 
value and makes the model strictly data-dependent and of limited practical use.

An approach retaining word order, based on n-grams [15], perceives an input (e.g., 
sentence) as a set of n-long ordered sub-sequences of elements (letters, words). Although 
retaining word order, n-grams allow only for simple sequence matching, while disregarding 
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deeper sentence structure. Again, instead of words one could use sequences of POS or 
concepts, however, ngrams still cannot cover more sophisticated patterns than word 
sequences.

An example of a language model aimed to go beyond BoW and n-grams, the skip-gram 
model (also known as skipped or distanced n-gram) [16], assumes that some words within 
an n-gram could be skipped over. In theory, this should allow extraction of most language 
patterns. However, to limit computational complexity of the model, skip-grams include 
a number of assumptions hindering the model, for example, that 1) skip-grams are generated 
from n-grams, not from the whole sentence, 2) a skip can appear only in one place, 3) the 
number of skipped elements is recorded separately for each gap (thus, two words separated 
by one word in between (1-skip-bigram) and by five words (5-skip-bigram) would necessarily 
be considered as different patterns), or that 4) the skip-length is predetermined, meaning 
that if the researcher chooses to extract only bigrams with only one skip in between, the same 
pattern, but with five skips will be disregarded from the beginning.

The above assumptions are counter-intuitive, since one can easily imagine the same sentence 
pattern appearing in two sentences of different length, or separated by gaps of different sizes. 
To illustrate this problem in Table 1 we compared which of the above-mentioned language 
models would discover particular patterns present in the two following sentences. The last 
right column represents a language model based on Language Combinatorics (LC).

1)	 John went to school today.
2)	 John went to this awful place, generously called by many school, not yesterday, but 

today.

Table 1.	Comparison of capabilities of different language models to capture (○) or not (×) certain patterns  
from the corpus containing two sentences, (1) and (2)

pattern
language model

BoW n-gram skip-gram LC

John ○ ○ ○ ○
John went × ○ ○ ○
John * to × × ○ ○
John * school × × × ○
John * to * today × × × ○

Finally, in all previous research on skip-grams the model was studied only for up to 
4-elements [17]. Only recent attempts used 5-element-long skip-grams [18], however, still 
generating them from n-grams, not the whole sentences.

Language Combinatorics is capable of dealing with any of the sophisticated patterns, 
by defining a pattern, or specifically, a sentence pattern, as any ordered combination of 
sentence elements frequently occurring in a corpus. This definition allows extraction of all 
possible meaningful linguistic patterns from unrestricted text. In our research so far, we have 
focused on applications of the method to various tasks from the areas of automatic pattern 
extraction and text classification.
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3.  Combinatorics-Based Language Modelling

Example: What a nice day !

5-el. pattern: 4-el. patterns: 3-el. patterns: 2-el. patterns: 1-el. patterns:

What a nice day ! What a nice * ! a nice * ! What a What

What a nice day * What a nice What * ! a

What a * day ! What a * ! nice * ! nice

no. of patterns: (1) (5) (10) (10) (5)

Fig. 1.	Examples of various length (= number of elements) combinations extracted from one sentence

The text classification method applying combinatorial language modeling is composed of 
four steps: feature extraction, weight calculation, classification, and threshold optimization.

3.1.  Feature Extraction with Language Combinatorics

To extract sentence patterns LC perceives sentences as bundles of ordered combinations of 
elements (words, etc.), and frequent combinations appearing in many sentences are defined as 
sentence patterns. As long as patterns are defined this way, they can be automatically extracted 
by generating all ordered combinations of such elements, verifying their occurrences within 
a corpus, and filtering out those combinations which appear only once.

In particular, in every n-element sentence there is k-number of combination clusters, 
such that 1 ≤ k ≤ n. The number of k-element combinations is equal to binomial coefficient, 
represented in eq. 1. Here, all combinations for all values of k from the range of {1, ..., n} are 
generated. Thus the number of all combinations generated for n-long sentence is equal to the 
sum of combinations from all k-element clusters of combinations, like in eq. 2.
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Moreover, all non-subsequent elements are separated with an asterisk (“*”), indicating 
some elements appeared between those two elements. Some examples of combinations 
extracted this way is represented in Figure 1.

3.2.  Weight Calculation

After combinations are extracted, their occurrences O are calculated. Those combinations 
which appeared only once are discarded, and those which appeared more than once are 
considered as patterns j characteristic to the sentence collection from which they were 
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extracted. In research applying LC in binary text classification [2, 3], the occurrences were 
also calculated separately for the positive side Opos and the negative side Oneg. Such occurrences 
of each pattern j are further used to calculate normalized weight wj according to equation 3, 
fitting the weight in the range {1, ... , -1}.
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For purposes of a text classification experiment, previous research also modified the 
weight in several ways, considering what makes a pattern representative for a corpus. In 
particular, wj was modified by multiplying it with:

▶▶ pattern length kj, which provides a weight with awarded length wLA, like in equation 4, 
or

▶▶ kj and overall pattern occurrence (Opos+Oneg), which provides a weight with awarded 
length and occurrence wLOA, like in equation 5.

		  w w k O Oj jLOA pos neg*= +( )* 	 (4)

		  w w k O Oj jLOA pos neg*= +( )* 	 (5)

Moreover, when two collections of sentences of opposite features (such as “positive 
vs.  negative”) are compared, the generated pattern list will contain patterns appearing 
uniquely in only one of the sides or in both (later: ambiguous patterns, or AMB). A special type 
of an ambiguous pattern is the one appearing on both sides with the same occurrence, making 
its weight equal 0 (zero-patterns, or 0P). Thus the list of originally generated patterns can be 
further modified by discarding either ambiguous patterns or zero-patterns.

3.3.  Classification

In the classification, previous research applied a classifier function defined as a sum of 
weights of patterns found in a sentence (eq. 6).

		  score = ≥ ≥−( )∑w wj j, 1 1 	 (6)

It produces a score for each analyzed sentence. The score alone does not yet specify a class 
(e.g., positive or negative). The intuition suggests that the higher above or below zero is the score, 
the more it resembles a style of writing usually found in one of the sides. However, an intuitive 
rule of thumb, with zero as a universal threshold does not apply to pattern-based method, since 
even one word difference in a sentence can produce much larger number of patterns on one of 
the sides, causing an imbalance in the data. Therefore a threshold optimization of the classifier is 
performed to specify which threshold is optimal for the classification of provided data.
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3.4.  Threshold Optimization and Heuristic Rules

Data is never ideally balanced. The collections of sentences are usually biased toward one 
of the sides (more sentences on one of the sides, or sentences are longer, etc.). This could 
produce more patterns for one of the sides. To minimize the bias, instead of applying a fixed 
rule of thumb, a more effective way is to automatically optimize the threshold, by verifying 
the performance for each step and selecting the optimal one for the given data.

Finally, to deal with combinatorial explosion occurring during exhaustive combinatorial 
manipulations, two heuristic rules were applied. The procedure of pattern generation would 
(1) generate up to six elements patterns, or (2) terminate at the point where no more frequent 
patterns were found.

4.  Applications

During recent years, LC was applied in a system for the support of experiments in text 
classification [19] and was used for a number of research in binary text classification. We 
summarize some of them below.

One of the research analyzed a small set of emotive (emotionally loaded) and non-
emotive sentences. Ptaszynski et al. [3] performed a study of such sentences with the use of 
LC and found out that completely automatic approach to extraction of emotional patterns 
from sentences can give similarly good results to state-of-the-art tools developed manually 
and much better results than traditional classifiers (SVM).

The capability of Language Combinatorics to capture hidden patterns in language 
confirmed in the above research encouraged Ptaszynski et al. [2] to extract patterns of 
cyberbullying or Internet harassment. They analyzed a medium sized dataset containing 
such harmful entries, and confirmed that the LC-based method outperformed all compared 
previous methods for cyberbullying detection.

In another research Nakajima et al. [20] applied LC in analysis of future related 
expressions for trend prediction. The experiments showed that sentences referring to the 
future contain frequent patterns, while patterns in other sentences (present, past or other) 
are sparse. This proved that future-referring sentences can be analyzed as one separate kind 
of sentences.

5.  Meta-Analysis of Experiment Results

Below we present meta-analysis of the results performed in previous papers. In the analysis 
we applied two datasets from the ones mentioned in section 4, namely, 1) small dataset 
containing emotive sentences, and 2) medium-sized dataset containing cyberbullying. We 
omitted the largest dataset [20] since experiments with it were performed only with one type 
of dataset preprocessing, while others used several kinds of preprocessing.
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5.1.  Datasets – Short Description

Emotive Sentences. Dataset used in [3] consists of 50 emotive and 41 non-emotive 
sentences collected originally by Ptaszynski et al. (2009) [21] for the needs of evaluating 
their affect analysis system. To collect the data they performed an anonymous survey 
on thirty participants of different age and social groups. Each of them was to imagine or 
remember a  conversation with any person they knew and write three sentences from that 
conversation: one free, one emotive (emotionally loaded), and one non-emotive (neutral, 
or non-emotional). Additionally, the participants were asked to make the emotive and non-
emotive sentences as close in content as possible, so the only perceivable difference was in 
emotional load.

Cyberbullying. The dataset used in cyberbullying detection [2] contains 1,490 harmful 
and 1,508 non-harmful entries. The original data was provided by the Human Rights Research 
Institute Against All Forms for Discrimination and Racism in Mie Prefecture, Japan (later: 
Human Rights Center) [22] and contains data from a number of informal school Websites 
from Mie Prefecture, Japan. The harmful and non-harmful sentences were manually labeled 
by experts, members of Internet Patrol, according to instructions included in an official 
governmental manual for dealing with cyberbullying [23].

5.2.  General Setup of Experiments

Both analyzed research used similar experiment setup. The prepared datasets were used 
in a text classification experiment with the use of the proposed LC-based method, and 
other methods (previously developed systems and classifiers). In classification, researchers 
compared the performance of sophisticated patterns to more common n-grams, and BoW. 
Feature weights were calculated according to the equations explained in section 3.2. For 
classifiers based on BoW, a traditional weight calculation scheme was also applied, namely, 
term frequency (tf ), and term frequency multiplied by inverted document frequency (tf*idf ).

Dataset Preprocessing. Both datasets were in Japanese and were preprocessed in the 
following ways (• – features used in both experiments; ◦ – features used only in cyberbullying 
detection).

▶▶ Tokenization: All words, punctuation marks, etc. are treated as separate features (later: 
TOK).

▶▶ Lemmatization: Same as above but the words are represented in their generic 
(dictionary) forms, or “lemmas” (later: LEM).

▶▶ Parts of speech (POS): POS are used instead of words (later: POS).
▶▶ Tokens with POS: Both words and POS information is included in one element (later: 
TOK+POS).

▶▶ Lemmas with POS: Same as above but with lemmas instead of words (later: 
LEM+POS).

▷▷ Chunking: Sentences are divided into sub-parts (chunks) by grammatical rules, such 
as noun phrases, verb phrases, etc. (later: CHUNK).



190

▷▷ Dependency structure: Same as above, but with information on grammatical relations 
between chunks (later: DEP).

▷▷ Chunks with Named Entities: Chunks with named entities (private names, 
numericals, etc.) annotated on sentences (later: CHUNK+NER).

▷▷ Dependency structure with Named Entities: Both dependency relations and named 
entities are used (later: DEP+NER).

Each kind of preprocessing (or feature set) represents a different level of generalization. 
Higher sentence generalization produces less unique patterns, but the produced patterns are 
more frequent. This can be explained by comparing a tokenized (low generalization) sentence 
with its POS representation (high generalization). For example, in the sentence from Figure 
1 the phrase “nice day” is represented by POS as ADJ N. There will be more ADJ N patterns 
than nice day, because many word combinations can be represented as ADJ N. There are 
also more words in a dictionary (around ten thousand) than POS labels (about a dozen). 
Comparison of classification results for different preprocessing methods can help specify 
whether it is better to represent sentences as more generalized or as more specific.

In meta-analysis we re-analyzed the results of experiments to answer the following 
questions:

▶▶ Is LC better than simple language modeling methods (n-grams, BoW)?
▶▶ Which preprocessing method (feature set) was the best?
▶▶ Which classifier modification was the best? (see sec. 3.2)

To answer these questions we compared the highest achieved balanced F-score within 
the threshold span achieved by each feature set. We also checked the correlations between 
generalization level of features and performance of each classifier modification. We also 
looked at break-even points (BEP) of Precision and Recall, showing which version was more 
balanced.

5.3.  Small Dataset: Emotive Sentences

5.3.1.  F-score Comparison Between Feature Sets

The highest achieved F-score was obtained by parts-of-speech (.774) while tokenized 
dataset with POS scored as second (.769). Both lemmatized datasets achieved the lowest 
scores (.744 and .746 for lemmas alone and with POS, separately). The initial intuition would 
suggest that parts-of-speech were the optimal setting, while lemmatization decreased the 
results. Worse results also tended to have wider dispersion between Precision and Recall.

As for the performance of modifications, all of the best classifier versions always used 
length awarded (LA), with either all ambiguous patterns (AMB) or zero-patterns (0P) 
deleted from pattern lists. No straightforward answer was obtained whether it was more 
useful to use patterns or n-grams. Although three out of five highest-scoring settings were 
based on n-grams (POS, TOK+POS, TOK), patterns were always second best and the 
differences were not significant. The results showing the highest achieved F-scores were 
represented in Figure 2.
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Standard SVM-based classifier trained on Bag-of-Words language model and tf*idf 
weighting scored much lower, with the highest score of F1 = 73%, which indicates that simple 
BoW language model, even when used to train an efficient SVM classifier is not suitable for 
classification of emotive language.

Table 2.	Comparison of Break-Even Points (BEP) of Precision and Recall for all classifier versions and 
preprocessing types for emotive sentences dataset. Best within each preprocessing group in bold type font. Best 

within each classifier type underlined

Feature sets TOK POS TOK+POS LEM LEM+POS

PAT-ALL 0.650 0.701 0.713 0.649 0.632

PAT-0P 0.637 0.710 0.713 0.627 0.653

PAT-AMB 0.624 0.560 0.702 0.664 0.637

PAT-LA 0.679 - 0.722 0.551 0.651

PAT-LA-0P 0.676 - 0.722 0.626 0.659

PAT-LA-AMB 0.688 - 0.716 - -

NGR-ALL 0.594 0.695 0.712 0.629 0.665

NGR-0P 0.609 0.697 0.712 0.633 0.665

NGR-AMB 0.595 0.668 0.664 0.610 0.628

NGR-LA 0.620 0.680 0.723 0.635 0.682

NGR-LA-0P 0.633 0.680 0.723 0.645 0.682

NGR-LA-AMB 0.665 - 0.707 0.652 0.655

5.3.2.  Break-Even Point Analysis

In the BEP analysis we looked 1) which classifier version got the highest BEP, 2) which 
usually got the highest BEP for different dataset preprocessing, and 3) which preprocessing 
most often provided highest BEP.

The comparison revealed that TOK+POS dataset almost always performed best, achieving 
the highest BEP. This stands somewhat in contradiction to the results for F-scores, where 

Fig. 2.	Best F-scores for each preprocessing of emotive sentence dataset, ordered from left to right, with 
corresponding Precision, Recall and Accuracy. Classifier version that achieved the score – in brackets
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POS dataset obtained highest scores. However, detailed analysis revealed that, although POS 
achieved the single highest F-score, for other thresholds they scored similarly, or lower than 
other datasets. Moreover, even with POS as the highest, TOK+POS was still the second-best. 
While also being the most balanced (highest BEP for almost all cases), TOK+POS could be 
the optimal for analysis of emotive sentences.

This would also suggest that the method works better on more specific, less generalized 
features. Although the best BEP of all, with P = R = F = 0.723 was achieved by n-gram based 
classifier awarding pattern length in weight calculation, again, there was no clear answer 
whether it was better to use patterns, or n-grams. Comparison of all BEPs for all classifier 
versions and experiment settings is represented in Table 2.

5.3.3.  Influence of Dataset Generalization on Results

Next we analyzed the influence of dataset preprocessing on the results. To achieve this we 
needed a quantifiable measure showing dataset generalization. A dataset is the more generalized, 
the fewer number of frequently appearing unique features it produces. Therefore to estimate dataset 
generalization level we decided to apply Lexical Density (LD) score [24]. It is a score representing 
an estimated measure of content per lexical units for a given corpus, and is calculated as the number 
of all unique words from the corpus divided by the number of all words in the corpus. However, 
since in our research we used a variety of different features, not only words, we will further call this 
measure Feature-based Lexical Density, or shortly, Feature Density (FD).

Table 3.	Analysis of influence of dataset generalization for emotive sentences dataset

Dataset 
Preprocessing

No. of 
unique

unigrams

No. of 
all

unigrams

Feature
Density

(FD)

Highest 
achieved
F-score

Highest 
unmodified

F-score
BEP

Fe
ta

ur
e 

so
ph

is
tic

at
io

n
←l

ow
 h

ig
h→

TOK+POS 311 821 0.3788 0.769 0.755 0.723

TOK 306 821 0.3727 0.754 0.733 0.688

LEM+POS 280 821 0.3410 0.746 0.733 0.682

LEM 276 821 0.3362 0.744 0.733 0.664

POS 12 819 0.0147 0.774 0.728 0.710

unique 1ngr with FD with

F1 F1-unmod. BEP F1 F1-unmod. BEP

Pearson Correlation -0.6018 0.5114 -0.3007 -0.6018 0.5114 -0.3007

Coefficient (p-value) (p = 0.283) (p = 0.378) (p = 0.623) (p = 0.283) (p = 0.378) (p = 0.623)

with statistical F1 & BEP F1-unmod. & BEP

significance *0.921 0.5735

(p-value) (p = 0.0265) (p = 0.312)

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001

After calculating FD for all datasets we calculated Pearson’s correlation coefficient 
(p-value) to see if there was any correlation between dataset generalization (FD) and the 
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results. Pearson’s coefficient can achieve scores from 1.0 (perfect positive correlation), 
through 0.0 (no correlation) to -1.0 (perfect negative correlation). In comparison we used 
the highest achieved F-scores. However, since the highest overall F-scores were various 
classifier settings (all patterns, or zero-patterns deleted; with length awarded, or not, etc.), 
we also used an unmodified version of the classifier (PAT-ALL). As an equivalent set of 
results we also used BEPs. Finally, we verified whether the correlations were statistically 
significant.

Firstly, the highest achieved F-scores were significantly positively correlated with BEPs, 
which indicates that both measures show in general similar tendencies. The highest achieved 
F-scores indicated somewhat strong negative correlation with both unique unigrams as 
well as with Feature Density score, and mild negative correlation with BEPs. Interestingly, 
highest F-scores for unmodified dataset (all patterns) were somewhat positively correlated 
with unique unigrams and FD. The two results stand in contradiction, since the first one 
suggests that the less dense is the feature set the higher the results will get, while the second 
result indicates the opposite. This is most probably due to the least feature-dense POS-tagged 
dataset, which achieved the highest score. Unfortunately, neither of the correlations were 
statistically significant.

5.4.  Medium-sized Dataset: Cyberbullying

5.4.1.  F-score Comparison Between Feature Sets

The best F-score (.803) was achieved by lemmatization with POS information. 
Interestingly, while the winning settings showed high consistency between Precision and 
Recall, close to BEP (.802), for other preprocessing settings, the lower was the F-score, 
the wider was the gap between P and R. This is meaningful not only regarding the general 
performance, also provides insight into the influence of generalization on performance.

Fig. 3.	Best F-scores for each dataset, ordered from left to right, with corresponding Precision, Recall and 
Accuracy. Classifier version that achieved the score – in brackets



194

Although the best score was achieved by n-grams, both settings were the highest 
interchangeably. For example, second best (F1 = 0.796) was pattern-based (TOK+POS/
PAT-0P) third best was n-gram based, fourth – again – patterns, etc. This suggests that 
we need to perform more experiments, most desirably on a wider threshold span to 
choose whether patterns or n-grams are better. The most optimal classifier settings was the 
unmodified one, or the one with zero-patterns deleted. This suggests, that, in the case of 
cyberbullying messages, it is more effective to use ambiguous patterns in classification. The 
results can be clustered into two groups: with a small and with a wide gap between P and 
R This grouping is similar further in BEP analysis. Figure 3 shows the F-scores ordered 
decreasingly from left to right.

5.4.2.  Break-Even Point Analysis

As for BEPs, the highest score of all (P = R = F1 = .802) was achieved by n-gram-based 
classifier. Lemmatized dataset combined with part-of-speech usually scored highest, differently 
to emotive sentence dataset, where this setting was one of the worst. The method usually 
performed better on more specific feature sets ((TOK, LEM, TOK+POS, LEM+POS), than 
for more generalized ones (POS, CHUNK, DEP, CHUNK+NER, DEP+NER). The results 
for best BEPs for all versions of the classifier were represented in Table 4.

Table 4.	Break-even points for all feature sets on cyberbullying dataset

Feature sets TOK LEM POS TOK
+POS

LEM
+POS CHUNK DEP CHUNK

+NER
DEP

+NER

PAT 0.761 0.751 0.613 0.785 0.781 0.633 0.566 0.603 0.510

PAT-0P 0.763 0.751 0.613 0.786 0.781 0.632 0.551 0.605 0.512

PAT-AMB 0.770 0.751 0.613 0.764 0.782 0.629 0.591 0.603 0.514

PAT-LA 0.729 0.748 0.613 0.726 0.781 0.632 0.568 - 0.505

PAT-LA-0P 0.729 0.737 0.596 0.726 0.760 0.633 0.549 - 0.505

PAT-LA-AMB 0.711 0.737 0.594 0.715 0.761 0.629 0.591 - 0.516

NGR 0.761 0.784 0.614 0.785 0.802 0.632 0.566 0.655 0.547

NGR-0P 0.762 0.784 0.613 0.786 0.802 0.632 0.551 0.652 0.548

NGR-AMB 0.770 0.767 0.570 0.764 0.777 0.612 0.591 0.610 0.526

NGR-LA 0.729 0.767 0.605 0.726 0.762 0.633 0.551 0.619 0.546

NGR-LA-0P 0.729 0.768 0.607 0.726 0.769 0.631 0.559 0.622 0.548

NGR-LA-AMB 0.711 0.762 0.596 0.715 0.750 0.613 0.589 0.589 0.529

5.4.3.  Influence of Generalization on Results

Feature Density score revealed somewhat strong negative correlation (around –0.7) 
between the results and FD. This means that the results were better when the FD was low. 
The correlation was not ideal due to the fact that the dataset with the lowest FD (POS) 
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achieved one of the lowest results. Interestingly, preprocessing methods resulting in very 
high FD (dependency parsing, etc.) also achieved similarly low results. For the given 
datasets the performance is growing along with decreasing FD, until the lowest FD is 
reached (POS), which also obtained low results. Thus, in the future we plan to use the 
FD measure to find a preprocessing method with optimal feature density, resulting in even 
better results. The analysis of influence of dataset generalization on results is represented 
in Table 5.

Table 5.	Analysis of influence of generalization on results for cyberbullying dataset

Dataset Preprocessing
No. of 

unique
unigrams

No. of 
all

unigrams

Feature
Density

Highest 
achieved
F-score

Highest 
unmodified

F-score
BEP

Fe
at

ur
e 

so
ph

is
tic

at
io

n

←l
ow

 h
ig

h→

DEP 12802 13957 0.917 0.658 0.658 0.591

DEP+NER 12160 13956 0.871 0.663 0.662 0.548

CHUNK 11389 13960 0.816 0.658 0.658 0.633

CHUNK+NER 10657 13872 0.768 0.686 0.684 0.655

TOK+POS 6565 34874 0.188 0.796 0.795 0.786

TOK 6464 36234 0.178 0.778 0.778 0.770

LEM+POS 6227 36426 0.171 0.803 0.783 0.802

LEM 6103 36412 0.168 0.790 0.764 0.784

POS 13 26650 0.000 0.677 0.677 0.614

unique 1ngr with FD with

F1 F1-unmod. BEP F1 F1-unmod. BEP

Pearson Correlation -0.450 -0.453 -0.431 -0.735 -0.736 -0.706

Coefficient (p-value) (p = 0.224) (p = 0.221) (p = 0.247) (p = 0.0242) (p = 0.024) (p = 0.0336)

with statistical F1 & BEP F1-unmod. & BEP

significance 0.9681 0.9595

(p-value) (p = 0.00002) (p = 0.00004)

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001

6.  Conclusions and Future Work

We presented a meta-analysis of experiments performed with Language Combinatorics 
(LC), a novel method for language model generation based on combinatorial manipulations 
of sentence elements. For the analysis we selected the most exhaustive experiments, namely, 
emotive sentence detection (small dataset) [3] and cyberbullying detection (medium-sized 
dataset) [2]. We briefly summarized the experiments and discussed general implications for 
future implementations of LC.

Meta-analysis revealed many contradictory results. For example, POS-tagged dataset 
obtained the highest F-score for the small dataset, but the worst for the medium-sized dataset. 
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Feature Density (FD) significantly correlated with F-scores and BEPs for mid-size dataset, 
but not for small dataset. Also, results for pattern list and classifier modifications were not 
consistent among the two datasets. For small dataset awarding pattern length resulted in 
better scores, usually boosted further by deleting ambiguous patterns. For medium dataset 
such modifications usually hindered the results.

As for similarities, awarding both pattern length and occurrence in classification was 
usually not effective. Therefore this option could be discarded in future experiments to reduce 
the overall time required for experiment.

In the future we plan to unify the meta-analysis. This time small dataset also had 
smaller number of preprocessing variations used in experiments, which could influence the 
correlations of Feature Density with results. Also, although there was no clear answer on 
whether patterns or n-grams were more effective, both always produced better results than 
Bag-of-Words model. To further confirm this result, we plan to extend the scope of patterns 
length from six elements to the maximal possible length, since the least frequent patterns will 
still be filtered out during the feature extraction procedure.

We plan to train other classifiers (SVM, Neural Networks, etc.) on the proposed pattern-
based language model. This however will require much stronger hardware than was available 
at the time of writing. Finally, the results of meta-analysis could have been influenced by 
various differences in datasets – not only in their sizes, but also, e.g., the type of language. 
Therefore in the future we plan to repeat the experiments on size-unified datasets.
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