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REDUCTIONS BETWEEN

CERTAIN INCIDENCE PROBLEMS

AND THE CONTINUUM HYPOTHESIS

A b s t r a c t. In this work, we consider two families of incidence

problems, C1 and C2, which are related to real numbers and count-

able subsets of the real line. Instances of problems of C1 are as

follows: given a real number x, pick randomly a countable set of

reals A hoping that x ∈ A, whereas instances of problems of C2 are
as follows: given a countable set of reals A, pick randomly a real

number x hoping that x /∈ A. One could arguably defend that, at

least intuitively, problems of C2 are easier to solve than problems

of C1. After some suitable formalization, we prove (within ZFC)

that, on one hand, problems of C2 are, indeed, at least as easy

to solve as problems of C1. On the other hand, the statement

“Problems of C1 have the exact same complexity of problems of

C2” is shown to be an equivalent of the Continuum Hypothesis.
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.1 Introduction

In what follows, we investigate some issues from the Set Theory of real

numbers and we work within ZFC – that is, the Axiom of Choice (AC)

and all of its equivalents are available. The presence of the Axiom of Choice

is critical and carries some subtleties which will be addressed in the last

section. We assume the reader is familiar with some intermediate set the-

ory – including ordinals, cardinals and cofinalities; the reader may find all

relevant definitions, notations and terminology in the standard reference

[9]. The cardinality of a set X is denoted by |X|. The family of all count-

ably infinite subsets of R is denoted by [R]ℵ0 . The cardinality of the real

numbers, |R| = 2ℵ0 , is denoted by c and is referred to as the cardinality of

the continuum. CH denotes the Continuum Hypothesis, which is the state-

ment “c = ℵ1” and is probably the most famous mathematical statement

whose validity was proved to be independent of ZFC.

This paper will investigate some problems which may be viewed as

thought experiments. In order to state such thought experiments, we have

chosen to proceed with a certain ad hoc identification (in principle, by

stylistic reasons; a thought experiment has to be compelling, otherwise it

would be ignored – but, of course, there are no naive choices in science). We

will identify randomness with arbitrariness. In practice, such identification

consists in the assumption that, when we declare that we are picking arbi-

trary objects, then there is no pattern involved and all possible outcomes

are unpredictable since they obey an equal probability distribution.

Let us turn to Theoretical Computer Science. In the field of Computa-

tional Complexity, one of the main techniques for relating and/or compar-

ing the complexity of two problems is given by the notion of reduction. In

the classical book of Garey and Johnson ([7]), a reduction of a problem A

to a problem B is defined in the following way (see p.14, op.cit.): A reduces

to B if there is a constructive transformation which maps any instance of

A into an equivalent instance of B; it should be clear that, in this context,

“equivalent” means that a solution for the instance of B which is obtained

via transformation provides a solution for the original instance of A (see

[16], p. 159). One usually denotes “A reduces to B” by A � B; in such

a case, it is usually said that “B is at least as hard as A” , or “A is at least

as easy as B” (or also “A is at least as simple to be solved as B”).
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A mathematical counterpart of the notion of reduction in Computa-

tional Complexity is given by the morphisms of the category PV, which is

a subcategory of the dual of the simplest case of the Dialectica Categories

introduced by Valeria de Paiva ([13],[14]); such morphisms are also known

as Galois-Tukey connections, which is a terminology due to Peter Vojtáš

([21]). Several connections between such category and Set Theory have

been extensively studied by Andreas Blass in the 90’s (see e.g. [3],[4]), and,

more recently, have also been investigated by the author ([19],[20]).

PV is the subcategory of the dual Dialectica category Dial2(Sets)
op

whose objects – which, in general, are triples (A,B,E), where A,B and

E are sets and E ⊆ A × B – are those which satisfy the following condi-

tions (which will be called the MHD conditions – where MHD stands for:

Moore, Hrušák and Džamonja, see page 2283 of [11]):

(1) 0 < |A|, |B| � 2ℵ0 .

(2) (∀a ∈ A)(∃b ∈ B)[aEb]

(3) (∀b ∈ B)(∃a ∈ A)[¬ (aEb)]

The morphisms between objects of PV are the very same morphisms of

Dial2(Sets)
op – that is, a morphism from an object o2 = (A2, B2, E2) to an

object o1 = (A1, B1, E1) is a pair of functions (ϕ, ψ), where ϕ : A1 → A2

and ψ : B2 → B1 are such that

(∀a ∈ A1) (∀b ∈ B2) [ϕ(a)E2 b −→ aE1 ψ(b)].

Morphisms of PV induce the so-called Galois-Tukey pre-order, which is

defined in the following way: if o1 = (A1, B1, E1) and o2 = (A2, B2, E2) are

objects of PV, then we have

o1 �GT o2 ⇐⇒ There is a morphism from o2 to o1.

The diagram below represents the situation where o1 �GT o2:

aA1

ϕ

��

E1 B1
ψ(b)

ϕ(a)A2 E2 B2 b

ψ

��
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Given an object o = (A,B,E) of PV, its dual object is given by o∗ =

(B,A,E∗), where bE∗a means that ¬aEb. One can easily check (via a con-

trapositive argument) that:

If o1 �GT o2, then o∗2 �GT o∗1.

Blass interprets (see page 62 of [3]) each object o = (A,B,E) in the

following way: o represents a certain problem (or a type of problem); A is

the particular set of instances of the problem represented by o, B is the set

of possible solutions of such problem and E is the relation “is solved by” ,

that is, aEb says that “b solves a” .

In this sense, the Galois-Tukey pre-order indeed measures complexity:

if o1 �GT o2 then the problems in o1 are not more complicated (that is,

are at least as simple) to solve than problems in o2, since every problem

in o1 may have its solution reduced to the solution of a problem in o2 –

or, more precisely, the act of solving a problem in o1 may be reduced to

the act of solving a (corresponding) problem in o2. Indeed, under Blass’

interpretation, the definition of the morphisms of PV says that, in the case

of o1 �GT o2, if b ∈ B2 is a solution for the instance ϕ(a) of o2 then

ψ(b) ∈ B1 is a solution for the instance a of o1.
1 These “GT -reductions”

will play a key role in this work.

The described machinery of the PV category will be applied for two

families of incidence problems (which may also be regarded as challenges),

C1 and C2, both related to real numbers and countably infinite subsets of

the real line. In both cases, to solve the problem (or win the challenge) one

has to give an appropriate (but random) response to a certain initial data;

notice that such procedure could also be interpreted as some one-round

game between two players, were the first player gives the initial data and

the second player wins if he gives a response which solves the problem.

Instances of problems of C1 are as follows: given a real number x, pick

randomly a countably infinite set of reals A hoping that x ∈ A, whereas

1 Notice that the reductions also apply to the cases where one assumes that the input

values are random variables. A function of a random variable is a random variable as

well – see, e.g., [17], pages 121 and 208 –, thus, in the described context, if a is a random

instance of A1 then ϕ(a) may be regarded as a random instance of A2, and the same

argument applies, mutatis mutandis – that is, using ψ – for a random instance b of B2

which solves ϕ(a).
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instances of problems in C2 are as follows: given a countably infinite set of

reals A, pick randomly a real number x hoping that x /∈ A.2

Blass’ interpretation of the triples of PV, described above, lead us to

identify C1 with the object (R, [R]ℵ0 ,∈): in this sense, each real number

x is an instance of the problem, whose possible solutions are countably

infinite subsets A ∈ [R]ℵ0 such that x ∈ A. And, in the precise same way,

we identify C2 with the object ([R]ℵ0 ,R, ��): in this sense, each countably

infinite subset X is an instance of the problem, whose possible solutions

are real numbers x ∈ R such that x /∈ A.

One could arguably defend that, at least intuitively, problems of C2
are easier to solve than problems of C1 – since countable subsets of the

real line have Lebesgue measure zero, and measure captures the notion of

probability : if A is countable, then A is null and being a member of A may

be regarded as a very rare event, and so it should be (or, at least, one could

plausibly believe that it should be) much more easy to pick randomly a real

number which is not in A, rather than doing (essentially) the opposite.

The main aim of this research is to compare the complexities of C1 and

C2, using GT -reductions to proceed with the measurements; such complex-

ity comparisons relate, as will be shown, to both CH and AC.

Let us describe the organization of this paper. In Section 2 the main

results of the paper are established:

1. In the context of GT -reductions, we prove (within ZFC) that, on one

hand, problems of C2 are, indeed, at least as easy to solve as problems

of C1.

2. On the other hand, the statement “Problems of C1 have the exact

same complexity of problems of C2” is shown to be an equivalent of

the Continuum Hypothesis.

In Section 3, we show that the arguments presented in order to establish

our equivalence for CH may be all formulated in terms of certain cardinal

invariants of the ideal of countable subsets of the real line.

2 In Section 4 we argue that, within a certain precise point of view, there is no

difference between starting with the real number or with the countable subset – because,

in fact, we will be able to assume that both of them will be given simultaneously. In

Section 2 we will keep on the described formal statement of the problems, mostly because

it fits perfectly with our main purpose, which is to investigate the action ofGT -reductions.
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In the final section we present some notes and questions. A main ques-

tion (regarding complexity and probability) emerges, and we debate whether

the results of this paper provide information to the discussion of such ques-

tion. In particular, we discuss certain relationships between the results of

this paper and those from Freiling’s famous paper on throwing darts at the

real line ([5]).

.2 Complexities and the Continuum Hypothesis

Accordingly to the discussion at the Introduction, we proceed (via reduc-

tions) to the comparison of the complexities of the incidence problems given

by C1 and C2. Throughout this section, o1 and o2 will refer to the following

objects of PV:

o1 = (R, [R]ℵ0 ,∈), and o2 = ([R]ℵ0 ,R, ��).

Under our interpretation, o1 represents the problems of C1 and o2 rep-

resents the problems of C2 (as described in the Introduction).

First we prove that, under the described formalization, problems of C2
are, indeed, at least as simple to be solved as problems of C1.

Proposition 2.1. There is a morphism witnessing o2 �GT o1. In

words: Problems of C2 are at least as simple to be solved as problems of C1.

Proof. The key of the proof is that, by the well-known König’s Lemma,

the cofinality of 2ℵ0 is uncountable. Let us enumerate R = {xα : α < c}.
For any X ∈ [R]ℵ0 , let γ(X) < c be the ordinal

γ(X) = sup{α < c : xα ∈ X}+ 1.

Let ϕ : [R]ℵ0 → R be defined by putting, for every X ∈ [R]ℵ0 ,

ϕ(X) = xγ(X).

Notice that, for any X ∈ [R]ℵ0 , every element of X has its ordinal index

strictly smaller than the ordinal index of ϕ(X).
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Let us consider ψ = ϕ, that is, we take the pair of functions given by

(ϕ,ϕ) as a candidate to be a morphism. We claim that such pair is, in fact,

a morphism of PV, from o1 to o2.

X [R]ℵ0

ϕ

��

�� R xγ(Y )

xγ(X)
R ∈ [R]ℵ0

Y

ϕ

��

Indeed: let X,Y be any countably infinite subsets of R. If ϕ(X) =

xγ(X) ∈ Y , then γ(X) < γ(Y ), and therefore xγ(Y ) = ϕ(Y ) /∈ X. �

As announced, whether the reverse GT -inequality between o1 and o2
holds or not is a question whose answer is independent of ZFC.

Theorem 2.2. The following statements are equivalent:

(i) The Continuum Hypothesis.

(ii) o1 �GT o2.

In words: Problems of C1 are at least as simple to be solved as

problems of C2.

(iii) o1 ∼=GT o2.

In words: Problems of C1 have the exact same complexity of prob-

lems of C2.

Proof. As we have proved that o2 �GT o1 holds in ZFC, the equiva-

lence between (ii) and (iii) is clear; so, it suffices to prove the equivalence

between (i) and (ii).

Proof of (i) ⇒ (ii): Assuming CH, we are allowed to enumerate the reals

as R = {xα : α < ω1}. Let ϕ : R → [R]ℵ0 be the function defined in the

following way: for every α < ω1,

ϕ(xα) =

{
{xξ : ξ � α} if α � ω ; and

{xn : n < ω} otherwise.
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Notice that the reals indexed by finite ordinals (i.e., indexed by natural

numbers) are elements of ϕ(x) for any real number x.

Let us consider ψ = ϕ, that is, again we take a pair of functions of

functions of the form (ϕ,ϕ) as a candidate to be a morphism. We claim

that such pair is, indeed, a morphism of PV, from o2 to o1.

xα R

ϕ

��

∈ [R]ℵ0

ϕ(xβ)

ϕ(xα)[R]ℵ0 �� R xβ

ϕ

��

Indeed: let x = xα and y = xβ be arbitrary real numbers. If xβ /∈ ϕ(xα)

then β is an infinite ordinal, and also one has, necessarily, β > α. It follows

that xα ∈ ϕ(xβ). This shows that (ϕ,ϕ) is a morphism of PV which

witnesses o1 �GT o2, as desired.

Proof of (ii) ⇒ (i): We argue contrapositively: assuming ¬CH, we

show that no pair of functions (ϕ, ψ) is a morphism from o2 to o1. Thus,

we have to check that, under 2ℵ0 > ℵ1, the following formula holds:

(∀ϕ, ψ : R → [R]ℵ0)(∃x, y ∈ R)[¬(y /∈ ϕ(x) → x ∈ ψ(y)) ],

or, equivalently,

(∀ϕ, ψ : R → [R]ℵ0)(∃x, y ∈ R)[y /∈ ϕ(x) ∧ x /∈ ψ(y)].

Fix A ⊆ R with |A| = ℵ1. It follows that

∣∣∣
⋃
x∈A

ϕ(x)
∣∣∣ � ℵ1

and, as we are assuming 2ℵ0 > ℵ1, we may pick some y /∈
⋃
x∈A

ϕ(x). To get

done, notice that, as ψ(y) is a countable subset of the reals, we necessarily

have A \ ψ(y) �= ∅ – and therefore we may pick some x ∈ A such that

x /∈ ψ(y). For this particular pair {x, y} of reals we have what we want,

that is, y /∈ ϕ(x) and x /∈ ψ(y). �
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.3 Combinatorics of Ideals

It is possible to reformulate our main result (namely, the equivalence be-

tween CH and the statement “(R, [R]ℵ0 ,∈) ∼=GT ([R]ℵ0 ,R, ��)”) in the lan-

guage of combinatorics of ideals. As it is probably known to the reader,

a family I of subsets of a non-empty set X is said to be an ideal of subsets

of X if it is a proper, non-empty subset of P(X) which is closed under

taking subsets and under taking finite unions.

In all of our arguments, one could easily replace

(R, [R]ℵ0 ,∈) and its dual object ([R]ℵ0 ,R, ��)

by the objects

(R, [R]�ℵ0 ,∈) and its dual object ([R]�ℵ0 ,R, ��),

where [R]�ℵ0 = {Y ⊆ R : |Y | � ℵ0} – that is, [R]�ℵ0 is the family of all

countable subsets of R, including the finite ones. With such change, we get

that [R]�ℵ0 is an ideal of subsets of R – in fact, a σ-ideal (i.e., closed under

countably infinite unions) which includes all singletons. There are certain

cardinal invariants which can be associated, in general, to any ideal, but

their behaviour is quite well-known in the case where the ideal is a σ-ideal

including all the singletons.

Definition 3.1. (Cardinal invariants related to ideals).

Let I be an ideal of subsets of an infinite set X.

(i) add(I) (the additivity of I) is the smallest size of a subfamily of I
whose union is not in I – that is,

add(I) = min{|A| : A ⊆ I and
⋃

A /∈ I}.

(ii) cov(I) (the covering number of I) is the smallest size of a subfamily

of I which covers X – that is,

cov(I) = min{|A| : A ⊆ I and
⋃

A = X}.

(iii) non(I) (the uniformity of I) is the smallest size of a subset of X

which is not in I – that is,

non(I) = min{|A| : A ⊆ X and A /∈ I}.
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(iv) cof(I) (the cofinality of I) is the smallest size of a subfamily of I
which is cofinal in I – that is,

cof (I) = min{|A| : A ⊆ I and (∀I ∈ I)(∃A ∈ A)[I ⊆ A]}.

It is easy to check that, for a σ-ideal I which includes all the singletons,

the following inequalities hold:

ℵ1 � add(I) � min{cov(I), non(I)}
� max{cov(I), non(I)} � cof(I) � |I|.

In the cases where I is an ideal of subsets of R, those cardinals in-

variants are examples of the so-called norms (or evaluations) of objects of

Dial2(Sets)
op which satisfy the MHD conditions (2) and (3); for this work,

we may assume that all objects are, in fact, in PV.3

Definition 3.2. (Norms of PV objects).

Let o = (A,B,E) be an object of PV. Its norm is the cardinal number

||o|| = ||(A,B,E)|| given by

||o|| = min{|Y | : Y ⊆ B and (∀a ∈ A)(∃b ∈ Y )[aEb]}.

One can easily check that, indeed, MHD conditions (2) and (3) ensure

that for any object o ∈ obj(PV) both o and o∗ have well defined norms.

The application of PV to Set Theory which was extensively studied

by Blass in the 90’s (see e.g. [3],[4]), and, more recently, by the author

([19],[6],[20]), is the so-called method of morphisms in the proof of inequali-

ties between cardinal invariants of the continuum – which was once declared

by Blass as being an empirical fact.

3 The ideal I has to satisfy |I| � 2ℵ0 in order to certain objects (which will be

presently described) be, formally, objects of PV; notice that this is the case for the ideal

of all countable subsets of R. However, it is worthwhile mentioning that for the ideals M
of all meager subsets of R and L of all null subsets of R (which both have size 22

ℵ0
), the

corresponding objects are considered as being objects of PV within the literature, and

this is justified by the fact that each of those two ideals have a basis of Borel sets; recall

that there are exactly 2ℵ0 Borel subsets of R.
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It is an empirical fact that proofs of inequalities between cardinal

characteristics of the continuum usually proceed by representing the

characteristics as norms of objects in PV and then exhibiting explicit

morphisms between those objects (A. Blass, 1995 [3]).

The influence of the morphisms (and of the GT -ordering) in this context

is due to the following result – which is the method of morphisms, so to

say.

Theorem 3.3. (“Folklore” ; cited in [4]). Let o1 and o2 be objects of

PV. If o1 �GT o2 then ||o1|| � ||o2||.

Thus, clearly one has that if o1 ∼=GT o2 then ||o1|| = ||o2||.
The easy proof of the above theorem is left as an exercise to the reader

(but may be found in [6]). Certain relationships between the method of

morphisms and the Axiom of Choice were investigated in [20].

And, as we have already mentioned, if o1 �GT o2 then o∗2 �GT o∗1 –

so, in fact, when one shows o1 �GT o2 both inequalities ||o1|| � ||o2|| and
||o∗2|| � ||o∗1|| are established.

Having the method of morphisms available, now we may explain how

to reformulate our main result in the language of the combinatorics of

ideals. First, we kindly invite the reader to realize that, in fact, the cardinal

invariants defined for ideals are norms of objects: more precisely, given an

ideal I, one has that

add(I) = ||(I, I, �⊇)||,
non(I) = ||(I, X, ��)||,
cov(I) = ||(X, I,∈)||,
cof(I) = ||(I, I,⊆)||.

It follows that, letting IC = [R]�ℵ0 denote the ideal of all countable

subsets of R, then the equivalence

CH ⇐⇒ (R, IC ,∈) ∼=GT (IC ,R, ��)

implies (by the method of morphisms) the following statement:

“If CH holds, then ||(R, IC ,∈)|| = ||(IC ,R, ��)||” – that is,
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CH ⇒ cov(IC) = non(IC)

However, it is easily seen (as an absolute, ZFC result) that the covering

number of IC is c (since if λ < c then any union of λ countable sets has size

not larger than max{λ,ℵ0} < c), and, even more clearly, the uniformity

of (IC) is ℵ1. With these absolute, ZFC values for cov(IC) and non(IC)
in mind, the arguments (via morphisms) presented for our equivalence of

CH, when regarded as proofs in the context of cardinal invariants of ideals,

reduce the equivalence to a quite compact formula:

CH ⇐⇒ cov(IC)︸ ︷︷ ︸
c

= non(IC)︸ ︷︷ ︸
ℵ1

.4 Notes and Questions

We have decided to present the problems of C1 and C2 as incidence problems

in order to emphasize the geometric appealing of those questions. However,

it is thought-provoking to notice that they also could have been presented

as decision problems. According to Garey and Johnson ([7], page 18), a de-

cision problem is a problem which has only two possible solutions, “yes”

or “no” , meaning that there is some yes-or-no question (posed in term of

the input values) such that the problem is to determine the correct answer

to such question. Formally, a decision problem Π consists of a set DΠ of

instances, and a subset YΠ ⊆ DΠ of yes-instances. Within this modelling,

a decision problem Π1(A) of C1 has the following structure:

DΠ1(A) = R
YΠ1(A) = A

INPUT: x

Y-N QUESTION: Is it true that x ∈ A?

A decision problem Π2(A) of C2 has the following structure:

DΠ2(A) = R
YΠ2(A) = R \A
INPUT: x
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Y-N QUESTION: Is it true that x /∈ A?

Problems in C2 are, in fact, the complements of the problems of C1; more

precisely, Π2(A) = Π1(R \ A) = (Π1(A))
c. The complement of a decision

problem Π (denoted by Πc) is, by definition, the decision problem whose

answer is “yes” whenever the input is a “no” input of Π, and vice-versa

([16], page 142).

Notice also that, within this presentation, we are assuming that x and

A may be given simultaneously, either for the problems of C1 or for the

problems of C2 – that is, given an unordered pair {A, x}, picked arbitrar-

ily, one can consider either the decision problem Π1(A) with input x or

the decision problem Π2(A) with input x, depending on the case we are

interested in.

In almost purely layman’s terms, we have turned the problems of C1
and C2 into the following (where x and A are as expected):

Problems of C1 (Answering YES to the corresponding decision problem):

To randomly pick – simultaneously or in any sequential order, it does not

matter – x and A such that x ∈ A.

Problems of C2 (Answering YES to the corresponding decision problem):

To randomly pick – simultaneously or in any sequential order, it does not

matter – x and A such that x /∈ A.

Of course, this simplification explicitly presupposes that there is no

difference between start considering the real number or start considering

the countably infinite subset of the reals (in both families of problems,

C1 and C2); both possibilities are allowed, together with the possibility of

simultaneity.

This assumption of the possibility of simultaneity is critical, so let us

elaborate some more on it. As we have remarked in the Introduction, we

are identifying the notions of arbitrariness and randomness; this was an

ad hoc identification, which was done, mostly, for the stylistic purposes of

presentation of the thought experiments of this paper – but let us use a little

bit of such identification in an argument, just once. Identifying arbitrariness

and randomness, the beginning of our two thought experiments could be

described in the same way: we may consider that we are able to pick

(randomly) one element of each of, say, two jars: one of the jars contains
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all real numbers, and the other one contains all countably infinite subsets of

the real line. And, in the same way that tossing a coin 2 times, sequentially,

is equivalent, in terms of probability, to tossing 2 coins simultaneously, we

may assume that our arbitrary pick of a real number and of a countable

subset of the reals (to solve a problem of C1 or of C2, depending on the

case) may be done simultaneously, since “being a certain real number”

and “being a certain countably infinite subset of the reals” are, clearly,

independent events. And, as the order of those events does not matter, as

we can even assume that they are simultaneous, we are also able to avoid, if

we want to, further discussions regarding the notion of symmetry; at most,

we could recognize that, in our context, symmetry may be regarded as

a merely, simple consequence of the independence we have just referred to.

Also, it is clear that one is able to drop the terminology of “morphisms

between objects of a certain category” and work directly with the families

of decision problems given by C1 and C2 to get to the very same conclusions,

via reductions (decision problems of C2 are at least as simple to be solved

as problems of C1, and the reciprocal statement is equivalent to CH).

All things considered (regarding the described modelling of C1 and C2
as families of decision problems), it seems that the results of this paper

provide information for the discussion of the following question:

Question 4.1. (The Main Question). Before being given a count-

able set A of reals and a real number x, both to be randomly taken, should

one say that it will be easier (or it will be more likely) that, eventually,

this real number x will miss the countable set A? Or should one say that,

under the very same conditions and interpretations, it will hit it?

Notice that, in the preceding question, “being easier” refers to complex-

ity, and “being more likely” refers to probability. The results of this paper

show that, if one accepts the exhibiting-reductions approach to discuss the

complexity of the problems C1 and C2, then a full answer to the “complex-

ity part” of the Main Question depends on the Continuum Hypothesis and

therefore we would have faced an undecidable problem (in the sense that

the statement “Problems of C1 have the exact same complexity of problems

of C2” was shown to be independent of the usual axioms of Set Theory).

In natural sciences, complexity and probability are usually regarded as

related notions. It is largely accepted in those fields that, when it comes to
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natural systems, “the more complex, the less probable” .

From the perspective of the physical sciences, explaining life is a highly

challenging task because the more complex a system is, the less prob-

able it becomes both in its appearance and its persistence (A. Moreno

and M. Mossio, 2015 [12]).

The results of this paper presuppose background and terminology of

computational complexity, and, of course, we cannot assume that there is

a direct, straightforward link between the notions of complexity of natu-

ral systems and computational complexity; so, we are not in position to

embrace here in this paper some version of the slogan “the more complex,

the less probable” . Nevertheless, it is quite interesting to point out that

ZFC was able to establish o2 �GT o1, which states that, accordingly to

our probability intuition, problems of C1 are more complex than problems

of C2. It is also worth mentioning that, in the Philosophy of Science, it

has been recognized that the possibility of simulation of computational

models of complex systems, as well as the technique of encapsulation (that

is, to divide a large, complex problem into smaller and simpler ones), have

been constituted themselves into important tools in the study of complexity

within science.

One of the greatest effects of modern computing on science had been

to make it possible to attack complex questions that previously were

intractable. By making simulation modelling practical, computers
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very first phrase of the abstract of [5]), based on certain probability rea-
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Freiling’s argument is exposed in terms of a thought experiment involv-

ing darts. In an elegant (but, of course, debatable) appeal to intuition, his

paper suggests, in fact, a number of thought experiments, so that a count-

ably infinite subset of R may be regarded, ultimately, as being the set of

punctured points obtained by throwing a countably infinite set of darts at

the real line.

As the title itself of Freiling’s article indicates, a main part of his ar-

gument against CH is to assume that there is a symmetry in a certain

situation. Next, we expose a slight variation of Freiling’s symmetry argu-

ment using the language of games; such variation is due to Aurichi and was

presented in his MSc Dissertation ([1]).

Suppose that for each real number x we have associated a countably

infinite set of reals, Ax – that is, we are considering a certain function

f : R → [R]ℵ0 which represents a given, random association x �→ Ax (so

that Ax = f(x)); to start to stick with the whole darts idea, we could think

that a randomly taken countably infinite subset of R is the set of punctured

points obtained by a certain random throw of a countably infinite set of

darts at the real line, and, accordingly, we may think that, in our context,

every real number x has thrown countable darts which have hit the real

line precisely at the points of the assigned countable set Ax. Two players,

ONE and TWO, will play a one-round game, as follows: ONE will throw

a dart at the real line, hitting a real number x1. After that, TWO will

throw a dart at the real line, hitting a real number x2; notice that these

last two dart throws resemble the fundamental assumption that x1 and x2
were randomly selected. ONE wins the game if x1 ∈ Ax2 or x2 ∈ Ax1 ,

otherwise TWO wins.

Now, assume that ONE and TWO have played their darts, so we may

consider real numbers x1 and x2 as above; let us give a blindfolded predic-

tion on the outcome of this game. We have that Ax1 is a countable set, and

therefore has null measure – and thus one could state (or predict) that it

is much more likely that x2 /∈ Ax1 (indeed, with probability 1), and (here

comes the argument of symmetry) as the real number line does not really

know which dart was thrown first or second (those were precisely Freiling’s

words), also with probability 1 one could state that, in fact, it is much more

likely that both “x1 /∈ Ax2” and “x2 /∈ Ax1” hold; that is, even blindfolded

we are able to declare that it is almost a sure thing that TWO has won

the game. Freiling also observes that, if in this very first play between
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ONE and TWO, “by some very strange miracle” , it turned out to happen

(say) x2 ∈ Ax1 , then we could always ask ONE and TWO to throw the

darts again, concluding that “what heuristically will happen any time, can

happen” – meaning, the probability of getting x1 /∈ Ax2 and x2 /∈ Ax1 is

so high that such outcome would be surely obtained after a few throws of

darts.4

With such arguments (delivered by Freiling as a “philosophical justifi-

cation”), one could conclude that the following formula should be valid:

Aℵ0 ≡ (∀f : R → [R]ℵ0)(∃x, y ∈ R)[y /∈ f(x) ∧ x /∈ f(y)].

And finally, using an argument very similar to our proof of the equiva-

lence (i) ⇐⇒ (ii) of Theorem 2.2, Freiling has shown that

Aℵ0 ⇐⇒ ¬CH.

We believe that our approach has some advantages, in the comparison

with the one of Freiling’s, mainly by three reasons:

1. Freiling has never formalized his probability argument; his philosoph-

ical justification was only intuitive. In fact, the only formal treatment

(using Probability Theory) of the darts problem the author is aware

of is the one presented by Aurichi in the Section 3.6 of [1].

2. After his intuitive argument, Freiling came to his formula Aℵ0 and

has shown its equivalence with ¬CH. In our work, a very similar

formula, which is

(∀ϕ, ψ : R → [R]ℵ0)(∃x, y ∈ R)[y /∈ ϕ(x) ∧ x /∈ ψ(y)],

has naturally appeared under a formal and well-defined mathematical

context: the one of comparing the complexities of the problems of C1
and C2. Such meaningful formula (whose validity was shown to be

a consequence of ¬CH in ZFC) allowed us to establish the following

statement: if the Continuum Hypothesis is false, then there are no

4 In fact, one could wonder if Freiling’s argument isn’t actually presupposing that

“what heuristically will happen any time, will happen some time”.
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possible reductions of problems of C1 to problems of C2. So, we be-

lieve the results of this paper, which constitute formal theorems on

their own, were stated under a very specified, clear and motivated

mathematical context.

3. We have presented here a formulation on which there is no need of

discussing symmetry issues (namely, the modelling of C1 and C2 as

families of decision problems). In fact, there are no arguments of

symmetry in the proofs of this paper. Nevertheless, recall we have

made quite clear that our modelling of C1 and C2 as families of decision

problems embrace (by presuposing) concepts as independence and

simultaneity.

As we come close to finishing this work, we have to admit that a number

of objections which have been made to Freiling’s darts could also apply to

our reductions; for instance, one could criticize and/or question the role of

the Axiom of Choice in all what have been done. As pointed out by Maddy

in [10], natural generalizations of Freiling’s statement Aℵ0 contradict AC

as well – that is, Freiling’s case against CH may be, in fact, a case against

AC. For instance, if one considers that “being a member of a set whose

cardinality is less than c” is also a very rare event, then one could pro-

ceed with a similar “darts game argument” to conclude that the following

formula should be valid:

A<c ≡ (∀f : R → [R]<c)(∃x, y ∈ R)[y /∈ f(x) ∧ x /∈ f(y)].

Nonetheless, it is easily seen that the statement “R can be well ordered”

implies that A<c is not valid (one has just pick some well ordering of R
with order type c, say 〈R,≺〉, and then the function f : R → [R]<c given

by f(x) = {y : y � x} is a counterexample to A<c). It follows that A<c is

inconsistent with ZFC.

Working similarly as in this paper, one could design problems which,

under the PV interpretations, could be represented by (R, [R]<c,∈) and

([R]<c,R, ��), in such a way that (R, [R]<c,∈) �GT ([R]<c,R, ��) follows, in

ZF, from a well-ordering of R. Regarding the absolute result of Proposition

2.1 (i.e., ZFC proves o2 �GT o1), if one tries to adapt its proof in order to

establish ([R]<c,R, ��) �GT (R, [R]<c,∈), then the easy conclusion is that,

in fact, such GT -inequality follows, within ZFC, from the statement “2ℵ0
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is a regular cardinal” (which holds, for instance, under Martin’s Axiom –

see [9], page 58).

The preceding paragraph justifies the following problem:

Problem 4.2. Determine the precise deductive strengths of

(i) (R, [R]<c,∈) �GT ([R]<c,R, ��), relatively to ZF; and

(ii) ([R]<c,R, ��) �GT (R, [R]<c,∈), relatively to ZFC.

Even the absolute ZFC result we have just mentioned – Proposition

2.1, o2 �GT o1 – encompasses critical uses of the Axiom of Choice. First

of all, and more obviously, the function ϕ defined in its proof is given in

terms of an enumeration (essentially, a well-ordering) of R. Second, and

less obviously, one should recall that König’s Lemma – which says that for

all infinite cardinal κ, the cofinality of 2κ is larger than κ – is a corollary of

the so-called König’s Theorem; and such theorem may be rephrased to the

following ZF statement, which in turn is easily seen to be an equivalent of

the Axiom of Choice:

“If I is a non-empty set and {Ai : i ∈ I} and {Bi : i ∈ I} are families

of sets such that, for all i ∈ I, Ai is strictly dominated by Bi for every

i ∈ I, then
⋃
i∈I

(Ai × {i}) is strictly dominated by
∏
i∈I

Bi.”

The preceding considerations on the role of the Axiom of Choice in this

work justifies the following question.

Question 4.3. What happens if we consider the families of problems

C1 and C2 in a choiceless Set Theory? What is the precise role of the Axiom

of Choice in all results of this paper? How much of the Axiom of Choice is

needed in order to get to the very same conclusions?

A question (raised by the referee) is whether the so-called Chu con-

structions (or Chu transforms), proposed by Barr and Chu in [2] and used

in Category Theory and Computer Science, could turn out to be a kind of

alternative way to express some of the arguments of this paper. As pointed

out by Blass ([3]) and de Paiva ([15]), there are similarities and differences

between PV and Chu constructions.

Linear Logic has been much investigated using categorical methods.

In particular two generic constructions, the Chu construction and the
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Dialectica construction were used to provide general ways of build-

ing classes of (categorical) models for Linear Logic. The construction

themselves are similar in many ways, but different in significant oth-

ers, so it is difficult to compare them abstractly (Valeria de Paiva,

2006 [15]).

There are strong but superficial similarities between PV and a special

case of a construction due to Chu. . . Specifically, Chu’s construction,

applied to the cartesian closed category of sets and the object 2, yields

a ∗-autonomous category in which the objects are the same as those of

PV and the morphisms differ from those of PV only in that they are

required to satisfy. . . (an equivalence) rather than just an implication

from left to right. This apparently minor difference in the definition

leads to major differences in other aspects of the category, specifically

in the internal hom-functor and the tensor product (Andreas Blass,

1995 [3]).

It is also interesting to notice that such a requirement of an equivalence

as, say,

ϕ(a)E2 b ←→ aE1 ψ(b)

in the definition of the morphisms in Chu categories also corresponds to

a different notion of reduction between problems: under this notion, and

considering the families of problems given by the objects o1 = (A1, B1, E1)

and o2 = (A2, B2, E2), we would have the following:

“o1 reduces to o2 if there is a Chu morphism (ϕ, ψ) witnessing that:

whenever b ∈ B2 and a ∈ A1, b ∈ B2 is a solution for the instance ϕ(a) of

o2 if, and only if, ψ(b) ∈ B1 is a solution for the instance a of o1.”

A full investigation on the action and influence of Chu categories on

the context of the results of this paper certainly deserves further efforts.

However, the application of Chu transforms does not seem particularly

promising: for instance, it is easy to see that the morphism of PV given by

(ϕ,ϕ) in the proof of Proposition 2.1 (which has witnessed the reduction

of problems of C2 to problems of C1) is not, in general, a Chu morphism.

The following question was raised by Joan Bagaria, during a session of

the Barcelona Set Theory Seminar:

REDUCTIONS, INCIDENCE PROBLEMS AND CONTINUUM HYPOTHESIS 141

Question 4.4. What happens, in the context of the results of this

paper, if we require the constituent functions of all morphisms to be Borel

functions?

Indeed, there is a well-known, classical argument of Measure Theory

(which is due to Sierpiński and consists of a smart application of Fubini’s

Theorem) which shows that there are no measurable well-orderings of the

real line, and therefore all morphisms defined in terms of well-orderings

of R (either with order type c or with order type ω1, depending on the

assumptions) are not constituted by Borel functions. In particular, the

morphisms which are used in the proofs of Proposition 2.1 and Theorem

2.2 (implication (i) ⇒ (ii)) are not Borel morphisms, so to say. It is

surely interesting to wonder what happens if we restrict ourselves to Borel

morphisms.

To finish, a disclaimer: the author refrains from going much further on

the philosophical discussion of the pure ZFC theorems presented in this

paper. However, he believes that those results will be appealing not only

for mathematicians, but for mathematical philosophers as well – since our

Main Question (Question 4.1) may raise a number of inquiries and issues

on themes such as complexity, probability, randomness and arbitrariness,

applicability of reductions between problems, simultaneity and symmetry,

etc.; not to mention the inquiries and issues related to the Continuum

Hypothesis itself.
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themselves are similar in many ways, but different in significant oth-

ers, so it is difficult to compare them abstractly (Valeria de Paiva,

2006 [15]).

There are strong but superficial similarities between PV and a special

case of a construction due to Chu. . . Specifically, Chu’s construction,

applied to the cartesian closed category of sets and the object 2, yields

a ∗-autonomous category in which the objects are the same as those of

PV and the morphisms differ from those of PV only in that they are

required to satisfy. . . (an equivalence) rather than just an implication

from left to right. This apparently minor difference in the definition

leads to major differences in other aspects of the category, specifically

in the internal hom-functor and the tensor product (Andreas Blass,

1995 [3]).

It is also interesting to notice that such a requirement of an equivalence

as, say,

ϕ(a)E2 b ←→ aE1 ψ(b)

in the definition of the morphisms in Chu categories also corresponds to

a different notion of reduction between problems: under this notion, and

considering the families of problems given by the objects o1 = (A1, B1, E1)

and o2 = (A2, B2, E2), we would have the following:

“o1 reduces to o2 if there is a Chu morphism (ϕ, ψ) witnessing that:

whenever b ∈ B2 and a ∈ A1, b ∈ B2 is a solution for the instance ϕ(a) of

o2 if, and only if, ψ(b) ∈ B1 is a solution for the instance a of o1.”

A full investigation on the action and influence of Chu categories on

the context of the results of this paper certainly deserves further efforts.

However, the application of Chu transforms does not seem particularly

promising: for instance, it is easy to see that the morphism of PV given by

(ϕ,ϕ) in the proof of Proposition 2.1 (which has witnessed the reduction

of problems of C2 to problems of C1) is not, in general, a Chu morphism.

The following question was raised by Joan Bagaria, during a session of

the Barcelona Set Theory Seminar:
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Question 4.4. What happens, in the context of the results of this

paper, if we require the constituent functions of all morphisms to be Borel

functions?

Indeed, there is a well-known, classical argument of Measure Theory

(which is due to Sierpiński and consists of a smart application of Fubini’s

Theorem) which shows that there are no measurable well-orderings of the

real line, and therefore all morphisms defined in terms of well-orderings

of R (either with order type c or with order type ω1, depending on the

assumptions) are not constituted by Borel functions. In particular, the

morphisms which are used in the proofs of Proposition 2.1 and Theorem

2.2 (implication (i) ⇒ (ii)) are not Borel morphisms, so to say. It is

surely interesting to wonder what happens if we restrict ourselves to Borel

morphisms.

To finish, a disclaimer: the author refrains from going much further on

the philosophical discussion of the pure ZFC theorems presented in this

paper. However, he believes that those results will be appealing not only

for mathematicians, but for mathematical philosophers as well – since our

Main Question (Question 4.1) may raise a number of inquiries and issues

on themes such as complexity, probability, randomness and arbitrariness,

applicability of reductions between problems, simultaneity and symmetry,

etc.; not to mention the inquiries and issues related to the Continuum

Hypothesis itself.
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