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Matthias EBERL

A MODEL THEORY

FOR THE POTENTIAL INFINITE

A b s t r a c t. We present the model theoretic concepts that allow mathematics

to be developed with the notion of the potential infinite instead of the actual

infinite. The potential infinite is understood as a dynamic notion, being an

indefinitely extensible finite. The main adoption is the interpretation of the

universal quantifier, which has an implicit reflection principle. Each universal

quantification refers to an indefinitely large, but finite set. The quantified sets

may increase, so after a reference by quantification, a further reference typically

uses a larger, still finite set. We present the concepts for classical first-order logic

and show that these dynamic models are sound and complete with respect to the

usual inference rules. Moreover, a finite set of formulas requires a finite part of

the increasing model for a correct interpretation.

1. Introduction

The aim of this paper is to present a model theory based on a potentialist’s viewpoint, i.e.,

infinity is understood as a potential infinite. An introduction of this approach has been

presented in [3]. In short, the usual formal language, in this paper first-order predicate

logic, is directly interpreted in this model, whereby the domain of a universal quantifier
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is an indefinitely large, but finite set. A philosophical discussion of this concept has

already been expounded by Shaughan Lavine in the Section “The Finite Mathematics of

Indefinitely Large Size” in his book [4], based on Jan Mycielski’s work about locally finite

theories [8].

1.1. Motivation and Related Work

In [12] Shapiro and Wright considered the potential infinite as an indefinite extensible

concept. Therein they state that “If a ‘collection’ is not a set, then it is nothing, has

no size at all, and so can’t be ‘too big’” and ask: “The question, simply, is whether

it is ever appropriate or intelligible to speak of all of the items that fall under a given

indefinitely extensible concept”. The authors come to the conclusion that there is no

satisfying solution how to read such a quantification and refer to reflection principles as a

possible answer. The interpretation that we present has this implicit reflection principle,

with the characteristic that the use of the phrase “for all elements . . . ” may immediately

change the state of the indefinitely extensible collection.

Let us shortly recap Dummett’s understanding1 of this notion in [2]: “An indefinitely

extensible concept is one such that, if we can form a definite conception of a totality all of

whose members fall under that concept, we can, by reference to that totality, characterize

a larger totality of all whose members fall under it.” The ordinal numbers and sets

are a typical example, but also the natural numbers form such an indefinitely extensible

concept. If we refer to “all sets”, this creates or reveals2 a new set and thus the totality

of all sets has changed. But already the concept “number of numbers” is indefinitely

extensible in this sense (first there is no number, creating 0, thus there is one number,

creating 1 and so on). The forthcoming formalization is based on the following line of

thoughts:

1. The infinite is understood as a potential infinite, which is a form of ontological

finitism without any actual infinite sets.

2. The potential infinite is regarded as being indefinitely extensible, which is a dynamic

concept. Infinite sets are exhausted by procedures.

3. It nevertheless allows indefinitely large finite stages as a substitute for completed

infinities.

1Whereas Dummett concludes that statements quantifying over an indefinitely extensible concept do

not follow the laws of classical logic, our model theoretic approach does not require any modifications of

axioms or inference rules.
2We want to emphasize that our terminology does not assume any philosophical view such as Platon-

ism, formalism, intuitionism or intentionalism (the latter was Jan Mycielski’s view which he explained in

[9]).
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4. These indefinitely large states are the basis for an interpretation with an implicit

reflection principle.

This reflection principle as part of the interpretation avoids situations as in set theory

with unrestricted quantification in the interpretation, which is justified afterward, e.g. by

the Lévy-Montague’s reflection principle or by a hierarchy of Grothendieck universes.

Marcin Mostowski uses potential infinite sets (Ni)i∈N with Ni := {0, . . . , i − 1} as a

basis of his model theory, but his approach is less dynamic and the axioms of Peano

arithmetic must be adopted in a way that there exists a greatest number (see [7], [6]).

Carlson [1] uses a “ranked” model with reference to Mycielski’s work. Recently Linnebo

and Shapiro [5] suggested to formalize the potential infinite using a modal reading of this

notion. They rely on an analysis of the potential infinite worked out by Niebergall [10].

All of the mentioned approaches use some translation, restriction or adoptions of the

original axioms. Our approach is new, to our knowledge, insofar as it formalizes the

notion of an indefinitely large finite as a relation, being part of the interpretation. As a

consequence, no manipulation of the axioms is necessary.

1.2. Outline of the Idea

For the purpose of explanation, start from a Tarskian model (M, |=) with an actual infinite

carrier set. In a first step exchange the underlying universe by a potential infinite set. This

is formally an increasing family (a direct system)MI := (Mi)i∈I with finite setsMi and

directed index set I. The index set represents the stages, necessary to see a set as being

dynamic, which may be read figuratively as time. The preorder ≤ on I expresses that

stage i is preceding stage i′ whenever i ≤ i′. The relations onM, and similarly functions,

are replaced by families of relations with states RC ⊆ MC := Mi0 × · · · × Min−1 for

C = (i0, . . . , in−1) ∈ In. Whenever C ≤ C ′, then RC is the restriction of RC′ to MC .

A single stateMi is in general not a (Tarskian) model. For instance, the standard model

for Peano arithmetic has an underlying carrier (Ni)i∈N with Ni := {0, . . . , i−1}, but none

of the sets Ni is closed under the successor operation.

The key part of the interpretation is a notion of being indefinitely large, given as

a relation C � i between a list C = (i0, . . . , in−1) of indices, called context, and the

indefinitely large index i. The state at index i is a substitute for an absolute infinitely

large state. The set {i ∈ I | C � i} defines an indefinitely large region inside the

system, replacing the single actual infinite state outside of MI . It is enough to test

quantified propositions on elements in Mi for such an indefinitely large index i whether

these propositions are true or not. New elements in Mi′ with i′ ≥ i do not change the

truth values of the propositions.

The interpretation |= of a formula Φ is then replaced by |=�, with relation � as an

additional parameter. The variable assignment a is taken fromMC , leading to |=� Φ[a :

C]. The basic difference to usual interpretations is the reading of the universal quantifier:
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|=� ∀xΦ[a : C] holds by definition iff (i.e., if and only if)

|=� Φ[ab : Ci] holds for all elements b ∈Mi for some i� C,

whereby ab denotes the list a, extended by b (and b is assigned to the variable x). The

reason for this definition is that the use of a potential infinite set does not permit us to

speak about all elements in all stagesMi, because it constitutes an increasing or “open”

collection and the locution “all” has no fixed meaning.

As a consequence, quantifiers in a formula refer to different stages of an increasing

domain. In a formula, say ∀x0 ∃x1Φ, the stage to which x1 refers is typically larger than

the one to which x0 refers3. We show in Section 4.6 that the usual classical deduction

rules are nevertheless sound and complete w.r.t. the interpretation in these models.

It is important to note that this form of potentialism is an ontological one, not an

epistemological one. In particular, Hilbert’s Program is concerned with the justification

of classical mathematics by finitary reasoning. Constructive mathematics uses finite al-

gorithmic procedures. We do not claim that there is an effective procedure to determine

an indefinitely large finite state. We only assume that if an existential assertion is true,

then there must be an instance for which the statement is true4. Even if the existential

assertion is unbounded, nonetheless, this does not require completed infinite sets: If an

existential assertion is true, it makes sense to go step by step until one finds the witness

in finitely many steps and then to stop there. Of course, the truth of the statement is not

decidable by this procedure, but this is epistemological issue.

Compared to Kripke models, the set of nodes K in a Kripke model is usually not

directed. When these models are used in order to show intuitionistic invalid propositions,

then they often use different nodes without upper bound. Even more important is the

fact that properties and relations in Kripke models might grow although the set of objects

is the same. In a model presented here, if a property P does not hold at some stage i

for a, it will not hold at a later state i′ ≥ i on a either. Finally, a Kripke model uses a

quantification over all (possibly infinitely many) later states k′ ≥ k to interpret ∀xΦ at

node k. By that, the quantification may use infinite sets of objects.

3Hilary Putnam already used a similar idea in [11] with concrete graph models of Zermelo set theory.

His aim was to show that an understanding of “mathematics as a modal logic” is equivalent to “mathe-

matics as set theory”. Putnam proposes an interpretation of a single formula in increasing graph models,

without reference to a maximal model, in order to translate a set theoretic reading of a statement into a

modal logic one.
4Basically, we refer to the meta-level notion and use the equivalence of the following statements (for a

property P on natural numbers): ∃n ∈ N P (n), and ∃n ∈ Ni P (n) for some i ∈ N. This equivalence is used

for the interpretation of Section 4.1. Moreover, we assume that existential and universal quantification are

reducible to each other. On meta-level we use classical reasoning, on object-level we investigate classical

logic. This corresponds to a “liberal potentialist” in [5], since we do not have a notion of knowledge

at stage i ∈ I, e.g. knowledge of whether ∀n ∈ N P (n) holds or whether there is some counterexample.

Nevertheless, our approach can be applied to Kripke models and intuitionistic logic as well, see Section 5.1.
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1.3. A Consequent Finitistic Reading

Sets on meta-level, such as the index set I or relation �, are in most situations infinite,

so the question arises, whether actual infinite sets are still used. Probably the presented

concepts cannot be developed without them.

Let us first assume that the infinite sets on meta-level are actual infinite sets. Then

the investigation shows how to develop potential infinite models and how to relate them

to actual infinite Tarskian models. Such a comparison obviously requires the notion of an

actual infinite set, at least the carrier set M of a Tarskian model is actual infinite (if it

is infinite). It is natural then to assume that meta-level sets, such as the index set I, are

actual infinite as well. This leads to a comparison as formulated in Lemma 2.8.

Nevertheless, Theorem 4.20 states that one never needs the whole, infinite modelMI

to interpret expressions. So if we do not compare potential infinite models to actual

infinite models, we can avoid actual infinity on meta-level as well. There is however an

unavoidable circularity, because a consistent presentation requires the understanding of

the interpretation from the very beginning. Compared to other approaches, e.g. [5], there

is no other language or concept as a “rock bottom”, instead, the new interpretation affects

its own presentation. A way to deal with this situation is that in a first reading, one may

regard infinite on meta-level as actual infinite. If the idea, that an infinite set is always an

indefinitely extensible system with indefinitely large intermediate states, is clear, a second

reading is possible.

In this second reading one should from the very beginning view infinite sets as dy-

namic concepts with a context dependent extension. The context is given by the currently

used expressions, objects, relations and states of these. The context on meta-level is left

implicit and the paper shows that it is always possible to make the context explicit, jus-

tifying the assumption that such a context always exists. Applied to the meta-level, one

would have to explicitly formulate the background-model and to formalize the language

in which the concepts have been developed. As a consequence, the locution i ∈ I, for

instance, is a syntactical expression which has an interpretation as an element i and an

increasing predicate (Ij)j∈J , such that i ∈ I means i ∈ Ij for a sufficiently large index j.
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Theorem 4.20 then states that the background-model is itself finite5 (at any time), but

adequate for all the expressions used to develop the model theory and to apply it to specific

models of interest. This consequent finitistic approach does not compare the potential

infinite models with actual infinite Tarskian models anymore, but dynamic models with

intermediate and indefinitely large states of this dynamic model.

Although it is possible to apply the results to first-order ZFC set theory, this is not

sufficient for a consequent treatment of mathematics with a potential infinite. A set in

ZFC set theory is a single object a that represents a “real” set through the interpretation

of the membership relation, which is in this model theory a potential infinite set. However,

a potential infinite set is primarily not a single entity, but a family of states of this object.

Higher-order logic introduces indefinitely extensible objects as objects of a higher type.

These are different to single objects. For instance, a Cauchy sequence is an indefinitely

extensible sequence of higher type whereas a real number is a single base type object.

1.4. Structure of the Paper

In Section 2 we develop the replacement of a static carrier set by a system MI and

relations by families of relations. A Σ-structure (Σ a signature) becomes a ΣI-structure,

whereby ΣI is a refinement of Σ. The system MI reflects the potentialist view on a

set (and likewise on a relation) as indefinitely increasing. We also introduce a notion

to express that an index set has “almost all” indices and extend this to contexts C =

(i0, . . . , in−1). We call these sets indefinitely large and they reflect the cardinal aspect of

the potential infinite.

Section 3 introduces the core concepts. First we introduce relation �, mentioned in

Section 1.2, which corresponds to the ordinal aspect of infinity. For an infinite structure,

� is itself indefinitely large. Before we define the interpretation, we introduce an inter-

mediate notion between syntax and semantics, that of an state declaration C | t : i (with

i ∈ I) and C | Φ for terms t and formulas Φ. It uses relation � for the quantifier and

guarantees that the necessary approximation instances of the functions and relations are

available for the interpretation. We define the interpretation only for expressions (i.e.,

terms and formulas) having such a state declaration, but show that for an indefinitely

large model all expressions have such a declaration.

Section 4 presents the main results. To ensure that the interpretation is sound, ad-

ditional requirements on relation � are necessary. Roughly, if i � C holds, then the

set Mi must contain all witnesses of existential quantified formulas, given that the vari-

able assignment is taken from MC . The construction is similar as in the proof of the

Löwenheim-Skolem theorem. This is handled in Section 4.4. In Section 4.5 we show

5But we cannot assume that all our sets are fixed finite sets, in particular, we cannot use the property

that an index set has a largest element. The index set NN has a finite size at any moment of a specific

reference, but the set could increase and a further reference uses a larger (still finite) set.
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amongst other topics that the interpretation is independent of the chosen state declara-

tion.

The main result is Corollary 4.17 and Theorem 4.20: The interpretation with reflection

principle is sound and complete and it requires for a finite set of formulas T only a finite

substructure MJ (with J a finite index set) to interpret all formulas in T correctly

— Mycielski proved this in [8] by translating formulas and using a common Tarskian

semantics. In Section 4.8 we carry out the developed concepts by use of set theory

as an example. Section 5 concludes the paper with further remarks, mainly possible

modifications.

2. Indefinitely Extensible Structures

This section describes the first step towards a model theory with potential infinite sets,

the use of a system instead of the static carrier set of a Tarskian model.

2.1. Systems

The mathematical formalization of an indefinitely extensible structure is based on a sys-

tem6, having several stages. This is a family of sets

MI := (Mi)i∈I ,

such that each Mi is finite. The set I of indices or stages is a non-empty directed set

with a preorder ≤ such that Mi ⊆ Mi′ holds for i ≤ i′. We use the abbreviation

↑ i := {i′ ∈ I | i′ ≥ i}. In order to be in line with the common definition of a model, at

least one set Mi must be non-empty.

The main example is NN = (Ni)i∈N, whereby the index set N is equipped with the

usual order ≤ and Ni denotes {0, . . . , i − 1}. A further example is PN = (Pi)i∈N with

Pi = P(Ni). Here P(Ni) refers to the powerset of Ni. Moreover, each finite setM is such

a family in a trivial way: The index set is any singleton set, say I = {∗}, andM∗ :=M.

The interesting situation is when I is unbounded, but we do not exclude the case that I
is a fixed finite set. In that case a greatest element j ∈ I and a comprehensive set Mj

exists.

A list of indices C = (i0, . . . , in−1) ∈ In is called context, or more specifically state

context. The empty context is denoted as () and Ci is the result of adding the index i to

an existing context C. MC stands for Mi0 × · · · ×Min−1 and ↑C for ↑ i0 × · · ·× ↑ in−1.
Moreover, C ′ ≤ C is defined pointwise for two contexts of the same length.

6The family MI is a special case of a direct system. When extending the approach to higher-order

logic, also inverse systems and more general notions of a system are required.
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2.2. Indefinitely Many Elements

Many of the subsequent concepts need a notion of “infinitely many” indices. Cofinality

of a set J ⊆ I is a weak notion of infinity, e.g., the intersection of two cofinal sets can

be empty. What is required is a stronger notion, one which roughly states that finally all

elements are in that set. Moreover, this notion must apply to contexts.

Consider a set H ⊆ In × I of contexts as a n-ary multivalued function C 7→ {i ∈
I | Ci ∈ H} that provides possible extensions of a context C ∈ In. We are interested in

those H that have sufficiently many values i for sufficiently many arguments C ∈ In. This

idea is formalized in the next definition by sets Dn+1. Therein up-set means a non-empty,

upward closed set.

Definition 2.1. The sets Dn ⊆ P(In) are defined recursively as follows:

H ∈ D0 :⇐⇒ H = {()}.
H ∈ D1 :⇐⇒ H contains an up-set, i.e., ↑ i ⊆ H for some i ∈ I.
H ∈ Dn+1 :⇐⇒ dn(H) ∈ Dn with dn(H) := {C ∈ In | CH ∈ D1}

and CH := {i ∈ I | Ci ∈ H}.

A family HN := (Hn)n∈N with Hn ⊆ In is indefinitely large or has indefinitely many

contexts iff Hn ∈ Dn for all n ∈ N.

For a family HN = (Hn)n∈N we shortly write CH for CHn+1 if C ∈ In. The next

proposition is essential, but its proof is straightforward.

Proposition 2.2. For all n ∈ N, the set Dn is a (proper) filter. Each set H ∈ Dn is

cofinal and ↑C ∈ Dn holds for all C ∈ In.

Each set Hn ⊆ In can be extended to a family HN in a natural way:

Definition 2.3. Let Hn ⊆ In, then there is a family HN generated by Hn: For m < n

let (i0, . . . im−1) ∈ Hm iff there are indices im, . . . , in−1 such that (i0, . . . , in−1) ∈ Hn. For

m > n let Hm be the set Hn × Im−n.

Lemma 2.4. If Hn ∈ Dn, then the family HN generated by Hn is indefinitely large.

Moreover,

Ci ∈ Hm+1 implies C ∈ Hm for all m ∈ N. (1)

Proof. We show Hm ∈ Dm for m ≤ n inductively on n−m and for m ≥ n inductively

on m: The case m = n holds by assumption. For m < n we have dm(Hm+1) ⊆ Hm since

CH ∈ D1 implies Ci ∈ Hm+1 for some i ∈ I. Moreover, dm(Hm+1) ∈ Dm follows from

Hm+1 ∈ Dm+1 (induction hypothesis), hence Hm ∈ Dm by the filter property.
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Assume m ≥ n and we have to show dm(Hm+1) ∈ Dm. We have CH = I ∈ D1 for

all C ∈ Hm, consequently Hm ⊆ dm(Hm+1). The claim then follows from the induction

hypothesis Hm ∈ Dm. Property (1) is obvious. �

Operations and relations on families of sets are defined pointwise, for instance, the

intersection HN ∩H′N is (Hn ∩H′n)n∈N.

Lemma 2.5. If HN and H′N are indefinitely large, then HN ∩H′N is indefinitely large,

too. If HN and H′N satisfy Property (1), so does HN ∩H′N.

2.3. The Structure on Systems

In order to make the system MI a first-order model, we need to define functions and

relations on it. To simplify the presentation we use relations only.

Definition 2.6. A family RH := (RC)C∈H of n-ary relations RC ⊆MC with H ⊆ In
is called compatible iff RC(a) ⇐⇒ RC′(a) holds for all a ∈MC ∩MC′ . A relation on a

system MI is a compatible family RH with a non-empty index set H. RH is indefinitely

large iff H ∈ Dn.

Compatibility implies that RC is simply the restriction of RC′ to MC if C ≤ C ′.

The requirement H 6= ∅ in this definition is quite weak. However, we do not require

the stronger condition of being indefinitely large in the general definition, since finite

structures do not necessarily satisfy them (cf. Section 4.7).

The notion of a signature Σ in the common Tarskian semantics is refined to a signature

ΣI . It consists of assignments R : C for relation symbols R in Σ, if C is of length arity(R),

such that each relation symbol R has at least one assignment R : C. If not mentioned

otherwise, the signature ΣI simply contains R : C for all state contexts C of length

arity(R).

Definition 2.7. Given a signature ΣI , based on Σ. A ΣI-structure is a family MI

(as introduced in Section 2.1) and a map assigning to each assignment R : C an instance

RC ⊆MC of a relation RH (with C ∈ H and H ⊆ In). We call ΣI indefinitely large7 iff

{C ∈ In | R : C} ∈ Dn for each n-ary relation symbol R in ΣI .

To each Σ-structure M there are associated ΣI-structures MI and vice versa:

Lemma 2.8. Given a Σ-structure M and a cover M =
⋃
i∈IMi. If the sets Mi

are finite and I is directed, then MI with i ≤ i′ :⇐⇒ Mi ⊆Mi′ defines a ΣI-structure,

7It may be the case that I is infinite but
⋃

i∈IMi is nevertheless finite. Then the signature ΣI of a

structureMI can be indefinitely large by this definition, although the whole structure is finite. This does

not lead to problems, however, we can also ignore these kind of structures because, if M :=
⋃

i∈IMi is

finite, they can be replaced by a trivial structure with I = {∗} and M∗ =M.
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whereby R : C is part of ΣI for all contexts C. The relations RC are the restrictions of R

to MC, hence H = In holds for all n-ary relations RH.

Conversely, given a ΣI-structureMI with relations RH, then the union of all elements

M :=
⋃
i∈IMi together with relations R :=

⋃
C∈HRC defines a Σ-structure.

The simplest way to construct a ΣI-structure from a Σ-structure is by choosing an

index set I which is isomorphic to Pfin(M), the set of all finite subsets of M, together

with relation ⊆. The example NN shows that the index set need not be the whole collection

Pfin(M), but it can be a well-ordered part of it. There are however situations in which

this is not possible (or requires at least the well-ordering theorem)8.

3. State Declarations

In this section we give the prerequisites that are necessary to define for a formula Φ the

interpretation |=� Φ[a : C]. A peculiarity of this interpretation is that it can be applied

only to formulas Φ having an state declaration C | Φ. Intuitively, C | Φ says that the

formula Φ has a meaning relative to context C.

The language L that we consider is that of a first-order predicate logic of signature

Σ. We assume that there is a fixed sequence x0, x1, . . . of variables, the constant ⊥, the

primitive connectives→, ∧, ∨ and quantifiers ∀, ∃. We apply the usual abbreviations, for

instance, ¬Φ for Φ→ ⊥ and > for ¬⊥. We use relation symbols only (function symbols

and terms are treated shortly in Section 5.1).

To each expression we explicitly add the list of free variables, which is always a list

of the form (x0, . . . , xn−1), whereby quantifiers bind the last9 variable of the list. We will

write as usual Φ(x0, . . . , xn−1) to indicate this and sometimes we call these expression

“n-ary”. We often omit the subscript of a variable, simply writing x.

3.1. The Indefinitely Large Relation

The core concept in order to interpret a formula in a potential infinite structure MI is

the notion of an “indefinitely large finite” or a “relative infinite”, given by the notion of

a �-relation.

8For instance, the set Pfin(R) is an uncountable collection without a well-ordered subset having R as

its union.
9This kind of convention is sometimes called “inverse (or dual) de Bruijn notation” or “de Bruijn

levels”. The order x0, x1, . . . corresponds to the order of bound variables in a formula which allows

a straightforward mapping of variables to positions in a context and in a variable assignment a =

(a0, . . . , an−1). That is, ak is assigned to xk in a formula Φ(x0, . . . , xn−1). We especially use this advantage

when we present an extended example in Section 4.8
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Definition 3.1. A family � := (�n)n∈N with �n⊆ In is named �-relation if it

satisfies Condition (1), i.e., Ci ∈�n+1 implies C ∈�n for all n ∈ N. An element C ∈�n

in a �-relation is a �-context (of length n).

We use infix notation, i.e., Ci ∈�n+1 is written as C � i, including ()� i for i ∈�1.

Then C� is the set {i ∈ I | C � i} and we sometimes write i � C instead of C � i.

Note that a �-context C = (i0, . . . , in−1) satisfies by definition (i0, . . . , ik−1)� ik for all

0 ≤ k < n.

The set C� corresponds to an indefinitely large region and if C� = ↑ h, then we

call h the horizon, see the figure below. The intuition is that the number of objects and

means at the current stage, given by the context C, is finite, and an indefinitely large (or

sufficiently large) index i� C is beyond the scope that we can overlook from there.

· · ·
i0 i1 . . . in−1

horizon h

sufficiently large index i︷ ︸︸ ︷current context C �

︸ ︷︷ ︸
indefinitely large region

So far we have not defined what exactly it means that an index i is indefinitely large

relative to a context C. This will be done in Section 4.2. For infinite structures MI

we will later assume that � is indefinitely large in the sense of definition 2.1. A trivial

example of an indefinitely large �-relation is I∗ = (In)n∈N. We already have, and we

later will call mathematical concepts “indefinitely large” if the set of involved states is in

the filter Dn. These are:

1. Families HN iff all Hn ∈ Dn, Def. 2.1.

2. n-ary relations RH iff H ∈ Dn, Def. 2.6.

3. Signatures ΣI iff {C ∈ In | R : C} ∈ Dn for all R : C in ΣI , Def. 2.7.

4. State declarations C | Φ iff {C ∈ In | C | Φ} ∈ Dn, Def. 3.2.

5. ΣI-models (MI , |=�) iff ΣI and � are indefinitely large, Def. 4.1.

One of the task is to show that the notion of being indefinitely large transfers from

one concept to the next.

3.2. Defining the State Declarations

Assume the model is using the extensible structure NN of natural numbers and let Φ(x0, x1)

be the formula x0 + 1 ≤ x1. Here we use a function symbol + that we have not introduced
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yet, but we look at it shortly in Section 5.1. In order to interpret the formula we have

to select states i0 ∈ I and i1 ∈ I for the variables x0 and x1. The variable assignment

(a0, a1) will then be taken from Ni0 × Ni1 . To interpret the constant 1 requires at least

N2, and to interpret x0 + 1 requires at least Ni0+1. The interpretation of formula Φ then

uses an instance ≤(i0+1,i1)⊆ Ni0+1 × Ni1 for the relation symbol ≤.

In order to make sure that we have the instances of (functions and) relations that

are large enough for an interpretation, we introduce a binary relation between a context

C ∈ In and a formula Φ(x0, . . . , xn−1), written as C | Φ. For terms t, in particular

variables, we introduce a ternary relation C | t : i between a context C ∈ In, a term t

and an index i ∈ I.

Definition 3.2. Given a signature ΣI and a �-relation �. The state declarations

C | xk : j and C | Φ are relations between a variable xk, a�-context C of length n and an

index j ∈ I, resp. between a formula Φ(x0, . . . , xn−1) and �-context C of length n. State

declarations are defined recursively on Φ.

C | xk : j :⇐⇒ j ≥ ik for C = (i0, . . . , in−1),

C | Rt0 . . . tm−1 :⇐⇒ C | t0 : j0, . . . , C | tm−1 : jm−1 and

R : (j0, . . . , jm−1) for some j0, . . . , jm−1,

C | Φ→ Ψ :⇐⇒ C | Φ and C | Ψ (and similar for ∧, ∨),

C | ∀xΨ :⇐⇒ C | ∃xΨ :⇐⇒ Ci | Ψ holds for some i ∈ I with i� C.

The relation C | ⊥ holds for all �-contexts C. An expression is called approximable

(in ΣI with �) if there is some state declaration for it. Likewise, a set of expressions

is called approximable if all expressions therein are approximable. We call the set of

declaration for a formula Φ indefinitely large iff {C ∈ In | C | Φ} ∈ Dn.

Remind that by Definition 3.1, if Ci is a �-context, then C is a �-context, too. If

the language has no function symbols, the terms tk in Definition 3.2 are all variables.

Expressions usually have several state declarations, and for the same declaration C | Φ

there may also be several ways how it has been derived, i.e., there could be different

declarations for subformulas.

One might compare a state declaration with a common type declaration Γ | t : σ of a

term t (having type σ in the type context Γ). A type declaration adds further information

to terms in order to rule out meaningless terms and to interpret them properly. Similarly,

a state declaration C | t : i adds the necessary state information that is necessary to inter-

pret the terms dynamically (and similarly the formulas). In both cases the declarations

are constraints to yield meaningful expressions only, as well as to define their meaning.

The next lemma roughly states that in an infinite structure all formulas are approximable

with infinitely many contexts.
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Lemma 3.3. Assume the signature ΣI and the�-relation are indefinitely large. Then

the set of declarations C | Φ is indefinitely large for all formulas Φ. In particular, each

formula is approximable.

Proof. By induction on Φ. For atomic formulas we show that C | Rt0 . . . tm−1 holds

for each �-context C of length n. Firstly, the set {C ′ ∈ Im | R : C ′} is in Dm by

assumption. Secondly, the set of all (j0, . . . , jm−1) with C | t0 : j0, . . . , C | tm−1 : jm−1
is an up-set and hence in Dm. Since their intersection is in Dm, and thus non-empty, we

have a context C ′ = (j0, . . . , jm−1) with R : C ′ and C | tk : jk. This shows C | Rt0 . . . tm−1.

The claim for the connectives follows directly from the filter property (Proposition

2.2). For the quantifier we have by definition

{C ∈ In | C | ∀xΨ} = {C ∈ In | ∃i ∈ I with Ci | Ψ and C � i}
⊇ {C ∈ In | {i ∈ C� | Ci | Ψ} ∈ D1}
= {C ∈ In | {i ∈ I | Ci | Ψ} ∈ D1} ∩ {C ∈ In | C� ∈ D1}.

In order to show {C ∈ In | C | ∀xΨ} ∈ Dn it suffices to show that both sets on

the r.h.s. are in Dn. By induction hypothesis {Ci ∈ In+1 | Ci | Ψ} ∈ Dn+1 and hence

{C ∈ In | {i ∈ I | Ci | Ψ} ∈ D1} ∈ Dn. The set {C ∈ In | C� ∈ D1} is in Dn since

�n+1∈ Dn+1 holds by assumption. �

The next definition is used in Section 4.7. Its main application is for an infinite set I
with a finite subset J ⊆ I.

Definition 3.4. Let T be a set of formulas, all approximable in ΣI with �. Then a

directed subset of indices J ⊆ I is a possible restriction for T iff all formulas in T are

approximable in ΣJ with the restriction of � to J .

From this definition it follows immediately that any set J ′ ⊆ I with J ⊆ J ′ is again

a possible restriction for T .

Lemma 3.5. Given a finite set of formulas T , approximable in ΣI with �, as well

as a finite set of indices I0 ⊆ I. Then there is a finite set J with I0 ⊆ J ⊆ I such that

J is a possible restriction for T .

Proof. All formulas in T are approximable in ΣI , so let T + contain for each formula

Φ ∈ T an (arbitrarily chosen) state declaration C | Φ. For a state declaration C | Φ there

is a finite set of involved indices, defined recursively on Definition 3.2:

JC|xk:j := {i0, . . . , in−1, j}, C = (i0, . . . , in−1), and j ≥ ik,

JC|⊥ := {i0, . . . , in−1}, C = (i0, . . . , in−1),

JC|Rt0...tm−1
:=

⋃
0≤k<m

JC|tk:jk , with R : (j0, . . . , jm−1),

JC|Φ→Ψ := JC|Φ ∪ JC|Ψ, similar for Φ ∧Ψ and Φ ∨Ψ,

JC|∀xΦ := JC|∃xΦ := JCi|Φ, with i� C.
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The required index set J is
⋃
C|Φ∈T + JC|Φ∪I0∪{j} with j ∈ I an upper bound of this

set. The sole role of index j is to make J a directed set. The way the indices have been

selected guarantees that the state declaration of C | Φ ∈ T + is also a state declaration in

ΣJ . �

In some situations it is possible to select a single�-context of length n such that each

n-ary formula is approximable with this single context:

Example 3.6. For each relation symbol R ∈ Σ let the signature ΣI contain R : C

for all contexts C of the length arity(R). Moreover, Σ shall have no function symbols.

Assume that � is such that we can define functions ιn, selecting a specific index from

C� (n the length of C) as follows:

i0 := ι0(()
�), i1 := ι1((i0)

�), i2 := ι2((i0, i1)
�), . . .

This is for instance possible if � is indefinitely large and �n⊆ dn(�n+1) holds, i.e.,

C� ∈ D1 for all �-contexts C. The latter may not be the case in general. Then each

context (i0, . . . , in−1) is a �-context and

(i0, . . . , in−1) | Φ(x0, . . . , xn−1)

holds for all formulas Φ. For any set of formulas T , the set {i0, i1, i2 . . . } is a possible

restriction for T . If T is a finite set such that all variables (free and bound) are within

x0, . . . , xn−1, then the set {i0, . . . , in−1} is already a possible restriction for T .

4. The Interpretation with Reflection Principle

Let L be the language of first-order predicate logic of signature Σ as defined in Section 3.

4.1. Defining the Interpretation

In the previous two sections we introduced the requirements in order to define the inter-

pretationMI |=� Φ[a : C] of a formula Φ in an indefinitely extensible structureMI . We

often omit the structure, writing |=� Φ[a : C] for MI |=� Φ[a : C]. The interpretation

uses the following concepts:

1. A signature ΣI over Σ and a ΣI-structure MI , see Section 2.3.

2. A �-relation �, see Section 3.1.

3. A state declaration C | Φ, see Section 3.2.

4. A variable assignment a = (a0, . . . , an−1) ∈MC .
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The variable assignment a is thus relative to the context C, given by the state declara-

tion. The structureMI together with the interpretation yields the ΣI-model (MI , |=�).

Definition 4.1. Given a ΣI-structure MI . The interpretation of variables and for-

mulas are defined recursively on the state declaration. The interpretation [[ ]] is a function

with two arguments, first, a variable in a state context C | xk : j, i.e. the triple (C, xk, j),

and second, a variable assignment a = (a0, . . . , an−1) ∈ MC . Its value is in Mj. The

interpretation of a formula |=� is a relation between a formula in a state context C | Φ

and a variable assignment a = (a0, . . . , an−1) ∈MC .

[[xk]]ja:C := ak for C = (i0, . . . , in−1) and C | xk : j.

|=� Rt0 . . . tm−1[a : C] :⇐⇒ R(j0,...,jm−1)([[t0]]j0a:C , . . . , [[tm−1]]
jm−1

a:C )

for some R : (j0, . . . , jm−1).

|=� Φ→ Ψ[a : C] :⇐⇒ |=� Φ[a : C] implies |=� Ψ[a : C],

and accordingly for the connectives ∧ and ∨. |=� ⊥[a : C] holds for no a ∈ MC . The

interpretation of the quantifiers is:

|=� ∀xΦ[a : C] :⇐⇒ |=� Φ[ab : Ci] holds for all elements

b ∈Mi for some i ∈ I (with C � i).

|=� ∃xΦ[a : C] :⇐⇒ |=� Φ[ab : Ci] holds for an element

b ∈Mi for all i ∈ I (with C � i).

Moreover, [[Φ]] denotes the family ([[Φ]]C)C∈H with H = {C ∈ In | C | Φ}, such

that [[Φ]]C ⊆ MC and a ∈ [[Φ]]C :⇐⇒ |=� Φ[a : C]. A ΣI-model (MI , |=�) is called

indefinitely large iff the signature ΣI and the �-relation are indefinitely large.

The condition C � i in brackets (used for the quantifiers) is already a consequence

of the declaration C | Φ and can be omitted. The interpretation [[¬Φ]] is the family

(MC \ [[Φ]]C)C|Φ, so negation is interpreted as a family of relative complements.

It is important to note that Definition 4.1 is at this stage too general as to be useful.

The interpretation of a formula Φ depends by definition on the state declaration of Φ and

could be different for different declarations. It is vital to have suitable restrictions on the

relation �, call adequate (see Definition 4.10). The next example is one of many which

shows the provisional nature of the definition so far.

Example 4.2. Consider the model (NN, |=�) and let i� (i0, . . . , in−1) hold iff i ≥ i0
and . . . and i ≥ in−1. Then we have NN |=� (∀x1 x1 ≤ x0)[0 : 1], since there is an index

i � 1 such that b ≤ 0 for all b ∈ Ni (take i = 1). But NN 6|=� (∀x1 x1 ≤ x0)[0 : 2] since

b ≤ 0 is not satisfied for all elements in Ni if i ≥ 2 (take 1 for x1).
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In contrast to the universal quantifier, the interpretation of the existential quantifier

uses the locution “for all i ∈ I”, so i does not range over a fixed finite collection10. In

Section 4.5 we will see that it possible to replace “for all i ∈ I” by a single index i ∈ I. It

is easy to confirm that the interpretation |=� becomes the usual Tarskian interpretation

|= if the system consists of one single setMi. Then in must be a�-context for all n ∈ N
and the structure must be finite then.

Remark 4.3. An open formula Φ(x0, . . . , xn−1) is implicitly seen as universally quan-

tified, that is, it corresponds to the sentence ∀x0 . . . xn−1Φ. For the common inter-

pretation in a Tarskian model (M, |=), this leads to |= ∀x0 . . . xn−1Φ ⇐⇒ |= Φ[a]

for all variable assignments a ∈ Mn. For the interpretation |=� however we have

|=� ∀x0 . . . xn−1Φ ⇐⇒ |=� Φ[a : C] for all variable assignments a ∈ MC of some

�-context C.

Lemma 4.4. Each definable relation in an indefinitely large model (MI , |=�) is in-

definitely large.

Proof. Each definable relation is of the form [[Φ]]. The set of state declarations for Φ

is indefinitely large by Lemma 3.3, hence [[Φ]] is indefinitely large, too, since the index set

of [[Φ]] comprises the contexts C with C | Φ by definition. �

4.2. How to Find Sufficiently Large Indices

Our aim is to show that propositions Φ interpreted by |=� have the same truth value as

in the usual Tarskian model and are thus independent of the chosen state declaration.

Additionally, the value [[Φ]] will then be a (compatible) relation in the sense of Definition

2.6. The technique which we apply for this purpose has been used in various ways, most

notably in the Löwenheim-Skolem theorem. Basically, we must guarantee that an index

i � C is as large as to embrace all witnesses of valid existential quantified formulas in

scope.

We may describe the notion C � i also as the use of “means”. If C defines the current

stage, then the elements of consideration are insideMC , in particular all assignments a are

within C. If we claim ∀xn Φ(x0, . . . , xn), then we only have to make sure that we consider

all elements b, replacing xn, that are reachable by the means applied to the current stage

MC , with a0 ∈ [[i0]], . . . , an−1 ∈ [[in−1]] replacing x0, . . . , xn−1 for C = (i0, . . . , in−1). These

means are given by a set of relations such that at each stage there is only a finite set S
of them. All relations in S are moreover definable from a finite set T ⊆ L of formulas11.

So the construction only needs the definable relations.

10We use this formulation mainly to be in line with the classical relation between existential and

universal quantifiers.
11If L contains function symbols, then we have to add terms to L and functions to S.
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This yields the following chain — we add the subscript T to S and � in order to

indicate the dependency from the set T :

Set of formulas T  Set of relations ST := {[[Ψ]] | ∃xΨ ∈ T̂ }
 Relation �T
 Interpretation |=� .

To get T̂ from T , first replace each occurrence of ∀x in T by ¬∃x¬. Then add all

subformulas resulting in the set T̂ , which is finite whenever T is. We will introduce the

other notions soon.

4.3. Avoiding a Circularity

The step from a set of formulas T to the set of relations ST = {[[Ψ]] | ∃xΨ ∈ T̂ } already

requires an interpretation. The natural choice would be to take the interpretation |=�.

But then we already need an adequate relation � before we define the properties that

we require from �. In order to avoid this circularity, define an auxiliary interpretation

|=m, which does not use relation � and which yields the same truth values as |=� for

formulas in T .

Let the state declaration be that from Definition 3.2 but without condition i� C in

case of the quantifiers, i.e., we take the trivial �-relation I∗. It is easy to confirm that

for an indefinitely large signature ΣI the assignment C | Φ holds for any context C of

length n and any n-ary formula Φ (the proof is similar as for Lemma 3.3, but simpler).

In other words, each formula Φ is approximable in ΣI with I∗. The interpretation |=m is

as |=�, but with the quantifiers adopted as follows:

|=m ∀xΦ[a : C] :⇐⇒ |=m Φ[ab : Ci] for all b ∈Mi for all i ∈ I.
|=m ∃xΦ[a : C] :⇐⇒ |=m Φ[ab : Ci] for some b ∈Mi for some i ∈ I.

So interpretation |=m simply simulates on an increasing carrier set the Tarskian in-

terpretation. The relation generated by the formulas Φ is denoted as [[Φ]]m, that is

a ∈ [[Φ]]mC :⇐⇒ |=m Φ[a : C]. The proof of the next lemma is straightforward.

Lemma 4.5. Given a ΣI-structure MI with an indefinitely large signature ΣI. Then

(MI , |=m) is an indefinitely large model. For each formula Φ in L we have MI |=m Φ[a :

C] ⇐⇒
⋃
MI |= Φ[a] for all a ∈MC.

The index set of an n-ary relation [[Φ]]m is not only in Dn, but it is In (provided the

signature ΣI is indefinitely large). Moreover, |=m Φ[a : C] ⇐⇒ |=m Φ[a : C ′] holds for

all assignments a ∈MC ∩MC′ .
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4.4. Witnesses of Existential Quantified Formulas

Given an n+ 1-ary relation RH and an element a ∈MC for a context C of length n. The

following sets play a key role:

IR(a : C) :=

{
{i ∈ I | ∃b ∈Mi RCi(ab)} if such i exists,

I otherwise.
(2)

This set is in any case non-empty. In a next step we define a�-relation�R from this

set. First define (�R)n+1 by

C �R i :⇐⇒ i ∈
⋂

a∈MC

IR(a : C), (3)

and let�R be the�-relation generated by (�R)n+1 (see Definition 2.3). Note that�R is

indeed a �-relation by Lemma 2.4, i.e., Ci ∈ (�R)m+1 implies C ∈ (�R)m for a context

C of length m.

Lemma 4.6. If RH is an indefinitely large n+1-ary relation, then�R is an indefinitely

large �-relation.

Proof. By Lemma 2.4 it suffices to show (�R)n+1 ∈ Dn+1, that is

{C ∈ In |
⋂

a∈MC

IR(a : C) ∈ D1} ∈ Dn. (4)

By assumption we have {C ∈ In | CH ∈ D1} ∈ Dn since H ∈ Dn+1. Furthermore,

↑ i ∩ CH ⊆ IR(a : C) holds for any a ∈ MC and i ∈ IR(a : C): In the first case of

definition (2), RCi(ab) implies RCi′(ab) for all i′ ≥ i with Ci′ ∈ H by compatibility of

RH; for the “otherwise case” this holds trivially.

Therefore, if CH ∈ D1 then IR(a : C) is also in D1 and we conclude that {C ∈
In | IR(a : C) ∈ D1} ∈ Dn. This holds for all finitely many a ∈ MC , hence Property

(4) follows from the fact that
⋂

a∈MC
IR(a : C) ∈ D1 holds iff IR(a : C) ∈ D1 for all

a ∈MC . �

To a set S of relations on a system MI , define �S by

C �S i :⇐⇒ C �R i for all R ∈ S.

It follows immediately from Lemmata 4.6 and 2.5:

Corollary 4.7. Given a finite set S of indefinitely large relations RH, then �S is an

indefinitely large �-relation.
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With the interpretation12 |=m from Section 4.3 define

I∃xΨ(a : C) := I[[Ψ]]m(a : C) and ST := {[[Ψ]]m | ∃xΨ ∈ T̂ }.

Remind that T̂ results from T by replacing each occurrence of ∀x in T by ¬∃x¬ and

then adding all subformulas. Let the relation �ST be abbreviated by �T .

Example 4.8. Let T consist of the single formula ∃x1Rx0x1 and consider the structure

NN. The interpretation of R shall be “x0 + x1 is a perfect number”, the first of them are

6 and 28. The relevant relation in ST is RH with H = N × N and R(i0,i1) := {(a0, a1) ∈
Ni0 × Ni1 | Pi0+i1−1(a0 + a1)}, where Pi(a) holds iff a < i is a perfect number. Consider

the context C = 8. We have IR(a0 : i0) = {i1 ∈ N | ∃a1 ∈ Ni1 Pi0+i1−1(a0 + a1)}, thus⋂
a0∈N8={0,...,7}

IR(a0 : 8) = ↑7 ∩ ↑6 ∩ · · · ∩ ↑1 ∩ ↑22 = ↑22,

since the sets ↑7 to ↑1 stem from assigning 0 up to 6 to a0, while ↑22 is needed for a0 = 7

(note that P29(7 + 21) holds and 21 ∈ N22). Hence we have 8�T 22 and (8, 22) is thus a

�-context.

Remark 4.9. If we consider a set of valid sentences T , as for instance axioms, then

only the restricted occurrences are relevant, i.e., the positive occurrences of ∃x and the

negative occurrences of ∀x, since for other occurrences no witness (or counterexample)

exists. So instead of replacing each occurrence of a universal quantifier to yield T̂ , it is

enough in that situation to only translate negative occurrences of ∀x.

4.5. Adequacy

We are now ready to define the necessary restriction on �-relations in order to get a

correct interpretation. This section contains the central results, Proposition 4.12, from

which the final theorems follow easily.

Definition 4.10. A�-relation� is adequate for a set of formulas T iff it is a subset

of �T . An interpretation |=�, and similarly a model (MI , |=�), is called adequate for

T if the underlying relation � is adequate for T .

A simple consequence of this definition is that if a �-relation on I is adequate for T ,

then its restriction to a subset J ⊆ I is also adequate for T .

Lemma 4.11. Given an indefinitely large signature ΣI and a finite set T of formulas.

Then there is an indefinitely large �-relation that is adequate for T .

12If one is willing to accept the circularity, then it is possible to use interpretation |=� instead of |=m.
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Proof. Take the relation �T , which is adequate for T , and use Corollary 4.7 to

show that �T is indefinitely large. Firstly, ST is a finite set of relations since T is finite.

Secondly, all relations in ST are indefinitely large (as a consequence of Lemmata 4.4 and

4.5). �

Note that this is different to a situation in which a relation� exists which is adequate

for the set L of all expressions. For instance, for a model (NN, |=�) of arithmetic there is

no such �-context except (). This is due to the fact that L contains the valid formulas

∃x0 x0 ≥ n for each n ∈ N, and
⋂
n∈N I∃x0 x0≥n = ∅.

The next proposition states that within T the interpretations |=� and |=m are the

same and they coincide with the usual validity in Tarskian semantics. Let
⋃
MI be the

structure with underlying set
⋃
i∈IMi, defined in Section 2.3.

Proposition 4.12. Given a model (MI , |=�), adequate for a set T of formulas. Then

for each Φ ∈ T , each �-context C with C | Φ and each variable assignment a ∈ MC we

have

MI |=� Φ[a : C] ⇐⇒ MI |=m Φ[a : C] ⇐⇒
⋃
MI |= Φ[a].

Proof. Consider in the beginning the situation that T is closed under sub-expressions

and does not contain a universal quantifier. The equivalence is shown by induction on

C | Φ and the only interesting case is the existential quantifier Φ = ∃xΨ. The implication

“|=� ⇒ |=m” follows from the fact that for all �-contexts C there is an index i � C,

since the declaration C | ∃xΨ presupposes Ci | Ψ with some i � C. Next we show the

implication “|=m ⇒ |=�”, i.e.,

there is j ∈ I such that ∃b ∈Mj |=m Ψ[ab : Cj]

implies ∃b′ ∈Mi′ |=� Ψ[ab′ : Ci′] for all i′ � C.

Given a ∈MC . Formula ∃xΨ is an element of T = T̂ , hence R := [[Ψ]]m is an element

of ST . We must prove ∃b′ ∈Mi′ |=� Ψ[ab′ : Ci′] for all i′ � C. By induction hypothesis

this is the same as ∃b′ ∈Mi′ RCi′(ab
′) for all i′ � C.

Every index i′ with C � i′ satisfies C �T i′ since |=� is adequate for T , hence

C �R i
′. Consequently, i′ ∈ IR(a : C). By assumption there is an index j ∈ I such that

∃b ∈Mj RCj(ab). Therefore, by definition of set IR(a : C), there is an element b′ ∈Mi′

with RCi′(ab
′).

So we are finished for the case that T is closed under sub-expressions and does not

contain a universal quantifier. The general situation is reduced to the just proven one by

noticing that�T is the same as�T̂ (or by using the fact that ∀x can be reduced to ¬∃x¬
for both interpretations). The second equivalence has been stated in Lemma 4.5. �

This proposition has useful consequences. First of all it shows that an interpretation

|=�, which is adequate for T , does not diverge from the common interpretation in a
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Tarskian model, as long as formulas are taken from the set T . For formulas outside T
there will surely be differences. From a potentialist’s point of view however, T is at most

potential infinite, and the substitute for talking about the whole set T is to specify a

sufficiently large finite set of expressions, so there is no “outside”.

Secondly, the interpretation |=� is independent of the chosen state declaration and

the way it has been derived. This follows from the equivalence MI |=� Φ[a : C] ⇐⇒⋃
MI |= Φ[a]. Similarly we have:

Corollary 4.13. Given a model (MI , |=�), adequate for a set T of formulas, then

[[Φ]] is a (compatible) relation for all approximable formulas Φ ∈ T .

Proof. Compatibility of [[Φ]] is a consequence of the following equivalences MI |=�
Φ[a : C] ⇐⇒

⋃
MI |= Φ[a] ⇐⇒ MI |=� Φ[a : C ′] for a ∈ MC ∩MC′ . Since Φ is

approximable, i.e., C | Φ for some context C, there is at least one instance [[Φ]]C , hence

[[Φ]] is a relation. �

As a further consequence from Proposition 4.12 we have an alternative definition for

|=� (∃xΦ)[a : C], that is, |=� Φ[ab : Ci] holds for an element b ∈Mi for some i ∈ I. This

follows immediately from Proposition 4.12 and the interpretations of ∃xΦ with respect

to |=m and |=� resp. Basically this states the irrelevance of the outer quantifier, be it

∃i� C or ∀i� C or a fixed i� C. This is indeed an essential property of an index being

“sufficiently large”. The next corollary expresses this irrelevance of the index i� C:

Corollary 4.14. Given a set T of formulas with Φ ∈ T , a model (MI , |=�) adequate

for T , and a �-context C with C | Φ. Then for any i� C and any variable assignment

a ∈MC we have

|=� ∀xΦ[a : C] ⇐⇒ |=� Φ[ab : Ci] holds for all elements b ∈Mi.

|=� ∃xΦ[a : C] ⇐⇒ |=� Φ[ab : Ci] holds for an element b ∈Mi.

4.6. Soundness and Completeness

In this section we show that the constructions of Σ-models out of ΣI-models and vice

versa preserve validity. As a consequence, the usual deduction rules of classical first-

order predicate logic are sound and complete with respect to the collection Mind of all

(indefinitely extensible) ΣI-models. Thereby we not only have to vary13 on the set of

models, but also on the index set I and relation �.

Let T be a set of sentences (of a language L of signature ΣI), which is no restriction

since we may consider the universal closure of an open formula. We write Mind |=� T to

13Consider the sentence Φ := ∀x Px and the models (N, |=) and (NN, |=�). The formula Φ is valid in N
iff P (b) holds for all b ∈ N, whereas its validity in NN depends on the �-relation. For a fixed �-relation,

formula Φ is valid iff P (b) holds for all b ∈ Ni0 , for some i0 � (), so validity in both kinds of model differ.
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mean thatMI |=� Φ holds for all formulas Φ ∈ T and all ΣI-models (MI , |=�) ∈Mind,

adequate for T . Note that in Mind |=� T , the suffix � is “generic”, not referring to a

specific relation.

Proposition 4.15. Let T be a set of sentences and Φ ∈ T .

1. For each ΣI-model (MI , |=�), adequate for T , there is a Tarskian Σ-model (M, |=)

such that MI |=� Φ ⇐⇒ M |= Φ.

2. If T is finite, then for each Tarskian Σ-model (M, |=) there is an indefinitely large

ΣI-model (MI , |=�) which is adequate for T and which satisfies MI |=� Φ ⇐⇒
M |= Φ.

Proof. In order to show the first claim, take the union M =
⋃
MI and apply

Proposition 4.12. For the second claim consider for a given structure M the structure

MI with I ' Pfin(M), defined in Section 2.3, which satisfiesM =
⋃
MI . Each relation

has an indefinitely large index set H = In, and ΣI is indefinitely large, both by Lemma

2.8. Because ΣI is indefinitely large we may apply Lemma 4.11 to get an indefinitely

large relation �, adequate for T . Finally, apply Proposition 4.12 again. �

Let MTar be the collection of all usual Tarskian models for a given signature Σ and

MTar |= T denote M |= Φ for all (M, |=) ∈ MTar and Φ ∈ T . The following corollary

follows immediately from the proposition above.

Corollary 4.16. Given a finite set T of sentences, then

Mind |=� T ⇐⇒ MTar |= T .

This is obviously the basis of a soundness and completeness result by applying the

corresponding theorems for Tarskian models14. From a potentialist’s viewpoint, either T
is a fixed finite set and we apply Corollary 4.16 to it. Or, if the set T is potential infinite,

we use some (indefinitely large) finite subset of it and again apply Corollary 4.16.

Corollary 4.17. From a potentialist’s viewpoint, the interpretation |=� is sound and

complete with respect to the collection Mind of all indefinitely extensible models and a

common deductive system of classical first-order predicate logic.

14This is an indirect argument to show completeness. Moreover, we have shown completeness based on

actual infinite Tarskian models. A potentialist might not accept this (see however Section 1.3). Though

it is possible to prove the result directly. A typical construction of a model from a consistent set of

formulas, e.g., that of Henkin, already gives a model with an increasing family as underlying carrier set.

This is straightforward for theories without equality, for a theory with equality, the construction of the

term model however requires a non-injective embeddings between the sets Mi — see Section 5.1.
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4.7. A Finite Submodel

Let a set of formulas T be given as well as a ΣI-model (MI , |=�), adequate for T . There

is a submodel ofMI that suffices to interpret the formulas in T correctly. This submodel

is finite, whenever T is. Let us call a structure MJ of signature ΣJ a substructure of a

ΣI-structureMI iff J ⊆ I and ΣJ consists of those R : C in ΣI , for which C ∈ J n holds.

That is, the interpretation of R ∈ Σ as a relation RH inMJ is a subset of instances from

the interpretation in MI .

Definition 4.18. Given a set of formulas T . A model (MJ , |=�) is a T -submodel of

(MI , |=�) iff MJ is a substructure of MI and

MJ |=� Φ[a : C] ⇐⇒ MI |=� Φ[a : C] (5)

holds for all Φ(x0, . . . , xn−1) ∈ T , all �-contexts C ∈ J n with C | Φ, and all assignments

a ∈MC .

If (MI , |=�) is a ΣI-model and J is a possible restriction for T (see Definition 3.4),

then each formula approximable in ΣI is also approximable in ΣJ and thus has an inter-

pretation |=� in the structure MJ . The �-relation used for the interpretation in MJ

is the restriction of that in MI to J . We will first show that a substructure MJ of MI

is automatically a T -submodel in that case.

Lemma 4.19. Given a set of formulas T , approximable in ΣI with �. Let � be

adequate for T and let J ⊆ I be a possible restriction for T . Then (MJ , |=�) is a

T -submodel of (MI , |=�), which is adequate for T .

Proof. We show (5) by induction on the state declaration C | Φ. Since the satisfaction

relation is independent of the state declaration and the way it has been derived (see Section

4.5), we may assume that the same declaration C | Φ (with the same derivation) as for

MJ has been used for MI as well.

This immediately yields the equivalence for atomic formulas Rt0 . . . tm−1. For Φ→ Ψ,

Φ ∧ Ψ, and Φ ∨ Ψ the claim follows straightforwardly from the induction hypothesis, so

consider ∃xΨ. By induction hypothesis we have for all ab : Ci, with the index i ∈ J ,

i� C, used in the derivation Ci | Ψ:

MJ |=� Ψ[ab : Ci] ⇐⇒ MI |=� Ψ[ab : Ci].

We can use Corollary 4.14 on both sides of the equivalence to get the equivalence

MJ |=� (∃xΨ)[a : C] ⇐⇒ MI |=� (∃xΨ)[a : C]. A similar consideration applies to

universal quantified formulas. �
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Theorem 4.20. Given a finite set T of formulas as well as a finite set of indices

I0 ⊆ I. Let the ΣI-model (MI , |=�) be indefinitely large and adequate for T . Then there

is a finite set J with I0 ⊆ J ⊆ I such that (MJ , |=�) is a T -submodel of (MI , |=�),

which is adequate for T .

Proof. T is approximable in I with � by Lemma 3.3. By Lemma 3.5 there is a

possible restriction J ⊆ I for T with I0 ⊆ J . So the result follows from Lemma 4.19. �

Consider the situation of Example 3.6 with a finite set of formulas T . The finite

set of indices {i0, . . . in−1}, mentioned at the end of the example, suffice to define the

T -submodel. More precisely, the index set is J = {i0, . . . in−1, j} with upper bound j, if

necessary. The interpretation of the sentence Φ := ∀x0 ∃x1 ∀x2 R(x0, x1, x2), for instance, is

|=� Φ ⇐⇒ ∀a0 ∈Mi0 ∃a1 ∈Mi1 ∀a2 ∈Mi2 R(i0,i1,i2)(a0, a1, a2),

which is the same in MI as in MJ .

4.8. Extended Example: Set Theory

Shaughan Lavine considered in [4] ZFC set theory and called the finitistic translation

of the axiom of infinity (by adding bounds to the variables) “Axiom of a Zillion”. In

our approach the axiom of a zillion is the usual axiom of infinity, but interpreted in an

increasing model. The signature Σ of the language of set theory has two binary relation

symbols ε (membership) and = (equality).

Consider a set universe15 V with index set I = Pfin(V) and Vi = i. The signature

ΣI over Σ consists of ε : (i0, i1) and = : (i0, i1) for all i0, i1 ∈ I. We use common

abbreviations, e.g., 0 := ∅, 1 := {∅}, 2 := {∅, {∅}}, Φ ⊆ Ψ := ∀x(x εΦ→ x εΨ),

x εΦ \Ψ := x εΦ ∧ ¬x εΨ,

x εΦ4Ψ := x εΦ \Ψ ∨ x εΨ \ Φ,

x1 = suc x0 := ∀x2(x2 ε x1 ←→ x2 = x0 ∨ x2 ε x0).

Let the ZFC axioms be given in an enumerated form. As mentioned in Remark 4.9, it

suffices to avoid only the negative occurrences of universal quantifiers in order to yield set

T̂ . Let the first 5 axioms — already formulated without negative occurrences of universal

15We may either assume that V is the class of all sets, or it is already an increasing structure, see the

remarks in Section 1.3.
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quantifiers — constitute set T . Assume these are:

AxExt := ∀x0x1(¬x0 = x1 → ∃x2 x2 ε x04x1).

AxPair := ∀x0x1∃x2Ψpair with Ψpair = ∀x3(x3 ε x2 ←→ (x3 = x0 ∨ x3 = x1)).

Empty := ∃x0∀x1 ¬x1 ε x0 (an instance of the separation schema).

AxPow := ∀x0∃x1Ψpow with

Ψpow = ∀x2((x2 ε x1 → x2 ⊆ x0) ∧ (¬x2 ε x1 → ∃x3 x3 ε x2 \ x0)).

AxInf := ∃x0(0 ε x0 ∧ ∀x1(x1 ε x0 → ∃x2(x2 ε x0 ∧ x2 = suc x1))).

Order the formulas in T̂ (consisting of the five axioms and all its subformulas) accord-

ing to the length of the context in which they occur. Then we find a possible index for

which the first case of Definition (2) applies. Note that x0 ranges over Vi0 , x1 over Vi1 and

so on. The relevant formulas in T̂ are the existential assertions:

0 : Empty, AxInf i0 = {0, ω}
1 : ∃x1Ψpow i1 = {1, Pω}
2 : ∃x2 x2 ε x04x1, ∃x2Ψpair, i2 = { 0, ω, 2, {0, Pω}, {ω, 1}, {ω, Pω} }
∃x2(x2 ε x0 ∧ x2 = suc x1)

3 : ∃x3 x3 ε x2 \ x0 i3 = { 0, 1, ω }

Pω refers to the power set of ω (which are both single elements in V). Let us look

more closely at the contexts of length 2: The elements 0, ω and 2 in i2 are witnesses

for the formula ∃x2 x2 ε x04x1; for instance, 2 witnesses the difference of ω and 1, if ω

is assigned to x0 and 1 to x1. The pair-sets 2, {0, Pω}, {ω, 1} and {ω, Pω} stem from

∃x2Ψpair, the last formula ∃x2 x2 ε x0∧ x2 = suc x1 only requires the witness 2 again (due to

assigning ω to x0 and 1 to x1). These indices satisfy ()�T i0, i0 �T i1, (i0, i1)�T i2 and

(i0, i1, i2) �T i3. The finite model VJ with J = {i0, i1, i2, i3, j} and j = i0 ∪ i1 ∪ i2 ∪ i3,
is a T -submodel of VI .

Adding more and more axioms and instances of schemata increases the finite model. If

we do not add all (actual) infinitely many instances of the schemata at once, we can still use

an “infinite” element ω inside the investigated model, but interpret it as potential infinite

in the background model by an increasing family of finite, “real” sets {b ∈ Vi | b ε(i,i) ω}
at stage i. For instance, the element ω at stage i2 is {0, 2} and {0, 1} at stage i3.
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5. Further Remarks

There are some immediate variations, which we briefly mention.

5.1. Some Adoptions

An obvious and simple generalization is attained by using a typed or sorted first-order

logic. Another generalization is attained by replacing subset inclusion by embeddings

embi
′
i :Mi ↪→Mi′ for i ≤ i′, which are not necessarily injective. One uses the direct limit

instead of the union in all constructions. This includes further examples e.g. syntactical

ones in which terms are identified at a larger stage.

A transfer to intuitionistic logic with Kripke models is also possible, but requires more

effort. This model has two index sets, the preorder of epistemic states (the Kripke frame)

and the directed set I of ontological states, used here. A relation R in a Kripke structure is

then a family of sets Rk
C with k a node and C a context. They satisfy Rk

C(a) ⇐⇒ Rk
C′(a)

for a ∈ MC ∩MC′ on the one hand and the weaker requirement Rk
C(a) ⇒ Rk′

C (a) for

k ≤ k′ and a ∈MC on the other hand.

Notice that we never required the property that a �-context (i0, . . . , in−1) satisfies

i0 ≤ · · · ≤ in−1. This is not necessary, but it can easily be achieved: Add · · ·∩
⋂

0≤k<n ↑ ik,
for C = (i0, . . . , in−1), to the right hand side in the Definition (3).

One may as well allow terms and functions fH := (fC→j)Cj∈H with finite maps fC→j
in a straightforward way. The state declaration C | t : j and interpretation [[t]]ja:C ∈ Mj

for an n-ary term t, context C ∈ In, index j ∈ I and assignment a ∈MC is

C | ft0 . . . tm−1 : j :⇐⇒ C | t0 : j0, . . . , C | tm−1 : jm−1,

[[ft0 . . . tm−1]]ja:C := f(j0,...,jm−1)→j([[t0]]j0a:C , . . . , [[tm−1]]
jm−1

a:C ),

for some j0, . . . , jm−1 with f : (j0, . . . , jm−1)→ j ∈ ΣI .

Instead of finite, we may use the notion of a definite collection — we avoid the notion

“small” due to its misleading connotation of size. These definite collection are defined

by closure properties. An indefinite collection is simply a collection that is not definite.

Being finite is the least notion of definiteness, whereas the natural reading in set theory is

“definite = size of a set” and “indefinite = size of a proper class”, including the example

of the cumulative hierarchy VOn (with the class of ordinal numbers On as index set and

Vα being the α’s rank of this hierarchy). A further example is that definite refers to

countable sets. In that case we may see the Löwenheim-Skolem theorem as a special case

of the construction described here. For a structure MI , the index set I must then be

directed with respect to definite sets, that is, for each non-empty definite subset J ⊆ I
of indices an upper bound of J exists in I, and MI must be locally definite, i.e., all sets

Mi are definite. With these adoptions, all statements and proofs are carried over easily

to this more general situation.
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5.2. Conclusion and Further Work

This paper presents a first step to develop a consequent view of infinity as a potential

infinite, that does not require any restrictions of logical inferences. We presented the

approach for classical first-order logic as a blueprint for other logics. The core concepts

are a formalized notion of an indefinitely large state and a state declaration for expressions.

Both concepts allow an interpretation of the universal quantifier that refers to finite sets

only.

In order to use it for a larger part of mathematics we have to deal with functions

and relations as objects. This requires (potential) infinite objects, which can be accessed

only by their approximations. We will extend this approach to a fragment of simple type

theory, which includes classical higher-order logic. This requires a more general notion

of a system, not only a direct system, and a general notion of a limit of this system. A

further challenge is the extension to intuitionistic higher-order logic.
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[6] M. Mostowski, On representing semantics in finite models, in: Philosophical dimensions of logic and

science, A. Rojszczak, J. Cachro, G. Kurczewski (Eds.), Springer 2003, pp. 15–28.

[7] M. Mostowski, Truth in the limit, Reports on Mathematical Logic 51 (2016), 75–89.

[8] J. Mycielski, Locally Finite Theories, Journal of Symbolic Logic 51:1 (1986), 59–62.

[9] J. Mycielski, The meaning of pure mathematics, Journal of Philosophical Logic 18:3 (1989), 315–320.

[10] K-G. Niebergall, Assumptions of infinity, in: Formalism and beyond: on the nature of mathematical

discourse, G. Link (Ed.), De Gruyter 2014, pp. 229–274.

[11] H. Putnam, Mathematics without foundations, The Journal of Philosophy 64:1 (1967) 5–22.

[12] S. Schapiro and C. Wright, All things indefinitely extensible, in: Absolute generality, A. Rayo and

G. Uzquiano (Eds.), Oxford University Press 2006, pp. 255–304.

Mathematisches Institut, LMU,

Theresienstr. 39, D-80333 München, Germany

matthias.eberl@mail.de


