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A b s t r a c t

This paper presents a  method for the parallelization of the Levenshtein distance algorithm 
deployed on very large strings. The proposed approach was accomplished using .NET 
Framework 4.0 technology with a  specific implementation of threads using the System.
Threading.Task namespace library. The algorithms developed in this study were tested on a high 
performance machine using Xamarin Mono (for Linux RedHat/Fedora OS). The computational 
results demonstrate a high level of efficiency of the proposed parallelization procedure. 
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S t r e s z c z e n i e

Artykuł przedstawia metodę zrównoleglenia algorytmu analizy odległości edycyjnej Leven-
shteina dedykowaną bardzo dużym ciągom tekstowym. Zaproponowane rozwiązanie zostało 
zaimplementowane na platformie .NET Framework 4.0 z uwzględnieniem metod dostępnych 
w przestrzeni nazw System.Threading.Task. Zastosowane algorytmy przetestowano na kom-
puterze wysokiej wydajności, w oparciu o narzędzia Xamarin Mono (dla SO Linux RedHat/
Fedora). Otrzymane wyniki pokazują znacząco zwiększoną wydajność obliczeń dla przedsta-
wionych w artykule rozwiązań.
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1. Introduction

The Levenshtein distance [6] between two strings of characters is equal to the minimum 
number of insertions, deletions and substitutions of characters required to convert one string 
into the second string. The Levenshtein distance has applications in many areas, e.g. text 
analysis (detection of plagiarism) [3, 13], spell-checking in text processors [7], web mining 
(search engine robots) [9, 10], bioinformatics (Levenshtein-Damerau distance for DNA 
structure analysis [8, 11]), etc.

The algorithm for Levenshtein distance calculation creates a  matrix (Levenshtein 
matrix) where its last element (Fig. 1) constitutes a solution. The asymptotic computational 
complexity of the algorithm assumes the order O(NM), where N and M denote the lengths of 
the text strings (i.e. the number of characters in each strings).

Difficulties occur when long strings have to be analyzed (e.g. millions of characters in 
one string). In such cases, the Levenshtein matrix is complex, and to attain the final results, 
more time is required. Moreover, it is more complicated to allocate such large matrices 
in standard development environments. The problem of analysis of very long strings may 
occur when, for example, the same fragments of a book (whole terms or words instead of 
consecutive characters in the original algorithm [2, 12]) have to be compared or when DNA 
chains (Levenshtein-Damerau distance [8, 11]) are analyzed.

In this experiment, it was decided to design both the Levenshtein as well as the 
Levenshtein-Damerau algorithms with Microsoft .NET Framework [14] and run developed 
applications under Linux OS with the use of Xamarin Mono Project [5]. Such project 
environments allowed for an additional validation of efficiency and of speed of the 
proposed algorithms. 

2. Description of the Levenshtein distance algorithm 

The Levenshtein distance K for two strings is the minimum number of operations –insertion, 
deletion and substitution required to convert one term (string) into the other. The Levenshtein 
distance K is equal to the d[M, N] element of  the so-called Levenshtein matrix d:

	 K = d[M, N] = LevenshteinDistance (String1, String2)

The main idea of the Levenshtein distance algorithm (LevenshteinDistance function) is 
described by the following pseudo-code:

input variables: char Text1[0..M-1], char Text2[0..N-1]
  declare: int d[0..M, 0..N]

	   for i from 0 to M
d[i, 0] := i

            for j from 0 to N
d[0, j] := j

            
  for i from 1 to M

                for j from 1 to N
       if substring of Text1 at (i – 1) = substring of Text2 at (j – 1) then
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                    cost := 0 else cost := 1
                    d[i, j] :=
                        Minimum(d[i - 1, j] + 1,
                        d[i, j - 1] + 1,
                        d[i - 1, j - 1] + cost)
                end for (variable j)
            end for (variable i)

            
  return d[M, N];

where:
d 	 – 	 Levenshtein matrix of the size N+1, M+1, formed for two terms: 

Text1 and Text2,
M, N 	 – 	 lengths of two terms respectively,
d[i, j] – (i, j) 	 – 	 element of Levenshtein matrix d,
Minimum 	 – 	 a function to calculate a minimum of three variables,
cost 	 – 	 variable that gets values either 0 or 1.

The deference between the Levenshtein and the Levenshtein-Damerau distance algorithms 
is shown below as a part of the relevant pseudo-code with the definition of elements of the 
Levenshtein-Damerau matrix z:

   z[i, j] :=
        Minimum(d[i - 1, j] + 1,
        z[i, j - 1] + 1,
        z[i - 1, j - 1] + cost)
                    
   if i > 1 and j > 1 and substring of Text1 at (i-1) = substring 
of Text2 at (j – 2) and substring of Text1 at (i-2) = substring of 
Text2(j-1]) then 
        z[i, j] := Minimum(z[i, j], z[i - 2, j - 2] + cost)

The Levenshtein-Damerau distance D is the minimum number of operations (insertion, 
deletion, substitution) required to change one term into the other, this is similar to the 
standard Levenshtein procedure, but additionally, it is necessary to account for the number of 
transpositions of neighboring characters. Consequently, the Levenshtein-Damerau distance 
between two sequences D is equal to the z[M, N] element of the suitable Levenshtein-
Damerau matrix z:

	 D = z[M, N] = LevensteinDamerauDistance (Text1, Text2)

The figures below and the pseudo-codes above show that the value of element [i, j] of 
matrix d in the current iteration is calculated based on the values: d[i – 1, j], d[i, j – 1] and 
d[i – 1, j – 1] for the Levenshtein distance and additionally, z[i – 2, j – 2] for the Levenshtein-
Damerau distance. This means that each of these values must be calculated in the previous 
iterations of the algorithm.
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Fig. 1. Levenshtein matrix d, constructed for terms: yesterday and tomorrow1

Fig. 2. Levenshtein-Damerau matrix z, constructed for deoxyribonucleic acid (DNA) sequences: 
TCCAATA and GGCCTCC (where: T – thymine, A – adenine, G – guanine, C – cytosine)

T a b l e  1

Examples of Levenshtein distance between two strings

No. string 1 string 2 Levenshtein distance
1 Car Cars 1
2 University Universities 3
3 Tom is writing a letter Tom is writin letters 4

Table 1 shows an example of the results of calculations of the Levenshtein distances using 
the conventional algorithm. In the first example, we need to add one character in string1 
or remove one character in string2 to transform one string into the other. In the second 
example, we need to substitute one character and add two characters (string1) or substitute 

1	 The application for both Levenshtein and Levenshtein-Damerau matrices calculations is available 
from the web site: www.pk.edu.pl/~aniewiarowski/publ/levenMatrix.exe.
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one character and remove two characters (string2). In the last example, we need to remove 
four characters (‘g’, ‘a’, ‘s’ and space) in string1 or add four characters in string2.

3. Numerical implementation of parallelization algorithm2

As was depicted above, difficulties occur when strings of millions of characters have to be 
analyzed. In such cases, the Levenshtein matrix becomes very large and more time is required 
to compute all its elements. Table 2 shows examples of time consumption requirements in 
the case of complex Levenshtein matrices calculation (without any parallelization procedure 
implemented). The whole series of experiments was performed on a  computer with 
parameters: 32GB RAM; two physical processors (Intel(R) Xeon(R) CPU E5-2620 0 @ 
2.00GHz, 24 threads). 

T a b l e  2

Time consumption in the case of complex Levenshtein matrices calculation 

No. Length of 
string 1

Length of 
string 2

Number of elements of
Levenshtein matrix

Computation 
time [sec.] (high 

performance computer)

Computation 
time [sec.] 

(standard PC)1

1 5 000 5 000 25 000 000 0.724 3.385
2 10 000 10 000 100 000 000 2.520 13.400
3 30 000 30 000 900 000 000 22.020 105.502
4 32 000 32 000 1 024 000 000 25.040 172.879

5 40 000 40 000 1 600 000 000 out of memory 
exception

out of memory 
exception

In Fig. 3, a graphical interpretation of the proposed solutions for large strings is presented. 
One very large matrix is built from the smaller component matrices resulting from the 
structure of the analyzed substrings. Each component matrix (i.e. values from last column 
and last row) is calculated and some of their values are transmitted to the next small matrix 
where they become initial values. This procedure reiterates through all component matrices. 
Each component matrix is calculated by the parallelized threads (1, 2 .. n) with the use of an 
array of locks algorithm where a younger thread (e.g. n – 1) waits for an older one (e.g. n – 2). 
Matrices which will not be used anymore are removed from the memory.

The pseudo-code below Fig. 3 describes a part of the function LevDistDecomposition 
where the input strings Text1 and Text2 are decomposed for the smaller substrings. Based on 
two subsequent substrings the component matrices are calculated and their final boundary 
elements are collected in two one-dimensional arrays: arrVertical and arrHorizontal. Next, 
these arrays are transmitted to the new small matrix in which they stay as the initial values 
for further calculations. Finally, the algorithm returns the Levenshtein distance as the result.

2	 All the results for the described algorithms were calculated with the use of a 64-bit console applica-
tion (written in C# language) available on website: www.pk.edu.pl/~aniewiarowski/publ/ LevParal-
lelCS.exe.
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Fig. 3. Parallelization procedure of the Levenshtein distance matrix decomposition
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input variables: char Text1[0..M-1], char Text[0..N-1], number of 
parts, number of parallel threads
declare: part_rangeX[0..number of ranges of horizontal parts], part_
rangeY[0..number of ranges of vertical parts] as structure of int from 
and int to
declare: results_of_matrix[0..number of ranges of horizontal parts, 
0..number of ranges of vertical parts] as structure of int[] 
arrVertical[0..length of Text1] and int[] arrHorizontal[0..length of 
Text2]

for vm from 0 to M do arrVertical[vm]:=vm
for vn from 0 to N do arrHorizontal[vn]:=vn

for mx from 1 to number of ranges of horizontal parts (i.e. number of 
elements of part_rangeX)
    for my from 1 to number of ranges of vertical parts (i.e. number 
of elements of part_rangeY)
      results_from_matrix[mx, my] := 
        LevDistParallelParts(
        substring of Text1 at (part_rangeX[mx-1].from-1,
         part_rangeX[mx-1].to – part_rangeX[mx-1].from+1),
        substring of Text2 at (part_rangeY[my-1].from-1, 
         part_rangeY[my-1].to – part_rangeY[my-1].from+1),
        number of parallel Threads, 
        results_from_matrix[mx - 1, my].arrVertical, 
        results_from_matrix[mx, my - 1].arrHorizontal 
       )
       clear results_from_matrix[mx - 1, my].arrVertical        
       clear results_from_matrix[mx, my - 1].arrHorizontal      
end for (variable my)
end for (variable mx) 

return the last element of arrVertical (or arrHorizontal) of the last 
element of result_from_matrix 
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In the pseudo code-above, some designations are taken:
LevDistParallelParts – function for calculation of the component matrices,
results_from_matrix – two-dimensional array, collects elements of one-dimensional arrays: 
arrVertical and arrHorizontal,
part_rangeX, part_rangeY – one-dimensional arrays with elements representing the range of 
calculated component matrices,
arrVertical, arrHorizontal – one-dimensional arrays of results, input parameters for LevDi-
stParallelParts function.

Additional complex operations, required for the implementation of the parallelization 
procedure are presented precisely in the pseudo-code in appendix A.

4. Results

In the present research, the Microsoft .NET technology was used (C# language) [14]3. The 
proposed algorithm was tested with mono-project (cross platform, open source .NET development 
framework) [5] and OS Fedora Linux. The obtained results are presented in Fig. 4. The diagram 
shows the relationship between the length of analyzed strings (additionally described by the 
number of parts of the main matrix – right-hand legend in Fig. 4) and the number of parallel 

3	 Some details of .NET’s threads and parallel technologies are presented in [15].

Fig. 4. Correlations between length of strings and computation time for different  
numbers of parallel threads for one component matrix
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threads for one component matrix. As can be seen, the final computation time strongly 
depends on string sizes and on the number of parallel threads. In the presented examples, the 
best optimal results were obtained for about 100 threads applied for the component matrix in 
all cases of partitioning. For other numbers of threads, the parallelized parts of the component 
matrix were too large or too small and the procedure of threads construction was not cost-
effective. 

In Fig. 5, the relationship between the number of parts of a  large decomposed matrix 
(1·1012 elements) and the computation time is presented. The obtained results show that 
the speed of calculations strongly depends on the number of parts (i.e. sizes of component 
matrices) of the decomposed matrix as well. This effect influences the main decomposition 
algorithm (in function LevDistDecomposition), in which the one-dimensional array of results 
becomes the input data for the next iteration, and some old data are removed from memory. 
If there are too many parts, the transfer of partial results (and other operations) will be too 
frequent.

Fig. 5. Relationship between number of parts (blocks) of decomposed matrix  
and computation time for string size of 1·106 × 1·106

The results obtained for strings depicted with the Levenshtein matrix of 4·1012 elements, 
are presented in Tab. 3. It turns out that for parts 50 × 50 and 60 × 60, the component matrices 
were too large and the system could not allocate them in memory.

In Fig. 6, the consumption times of computations of the Levenshtein distance for very 
long strings with the use of optimized parameters (the best values of number of parallel 
threads for one component matrix and number of parts of decomposed main matrix) are 
presented. It is worth underlining that the calculation time versus the string’s length grows 
approximately according to the power function.
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Next, the calculation times of the Levenshtein distance for very long texts with or without 
the parallelization procedure were compared. Different length texts were analyzed and the 
obtained results are presented in Tab. 4 and Fig. 7.

T a b l e  3

Computation times for two long strings according to number of blocks of main matrix

String sizes
Number of parallel 

threads for component 
matrix

Number of parts 
of main matrix Computation time [sec.]

1 000 000 × 1 000 000 100 50 × 50 4 590.35

1 000 000 × 1 000 000 100 60 × 60 4 601.1

1 000 000 × 1 000 000 100 70 × 70 4 669.4

1 000 000 × 1 000 000 100 80 × 80 4 704.4

2 000 000 × 2 000 000 100 50 × 50 out of memory exception

2 000 000 × 2 000 000 100 60 × 60 out of memory exception

2 000 000 × 2 000 000 100 70 × 70 17 360.4

2 000 000 × 2 000 000 100 80 × 80 17 630.58

Fig. 6. Computation times of calculations for very long strings using matrix decomposition  
with the parallelization procedure
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Fig. 7. Computation times of calculations of long strings using Levenshtein distance algorithm with 
and without parallelization for one decomposed matrix 

Based on Fig. 7, it can be seen that the parallelized Levenshtein distance algorithm is 
about 4–5 times faster than that without the parallelization procedure applied. 

T a b l e  4

Computation times of Levenshtein distance algorithm with or without parallel procedure

Chars in text A Chars in text B Comp. time [sec.] – with 
parallel procedure

Comp. time [sec.] – no parallel 
procedure

5 000 5 000 0.18 0.72

10 000 10 000 0.55 2.52

20 000 20 000 1.95 9.84

25 000 25 000 2.97 15.33

30 000 30 000 4.20 22.08

32 000 32 000 4.82 25.04

33 000 33 000 out of mem. exception out of mem. exception

Figure 8 presents the computation times of DNA sequences for one decomposed 
Levenshtein-Damerau matrix with the use of assumed (100) number of parallel threads. As 
can be seen, the parallelized algorithm is again about 4-5 times faster than the algorithm not 
being parallelized. DNA sequences consist of chars T, A, G, C (described in Fig. 2).
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Fig. 8. Computation times of calculations of DNA sequences using Levenshtein-Damerau  
algorithm with and without the parallelization procedure for one decomposed matrix 

5. Conclusions and further work

The research presented in this paper results in a  method for the parallelization of the 
Levenshtein distance algorithm. Its implementation allows for the improvement of the 
speed of calculating the similarity measure of two long strings. In the presented examples, 
a high efficiency of the proposed techniques was achieved and very good results on a high-
performance computer were confirmed [4].

The algorithm proposed in the paper was implemented in the mechanism of automatic 
selection of promotors and reviewers of diploma thesis within the system “Diplomas’ 
Manager”. This system was implemented at the Faculty of Physics, Mathematics and 
Computer Science of the Cracow University of Technology4 as a tool for diploma thesis 
management. The solution was also implemented within the anti-plagiarism system 
of “Diplomas’ Manager” and high efficiency in the case of searches for plagiarism was 
achieved.  

In our future research, efforts will be undertaken towards improving the Levenshtein-
Damerau algorithm for analyzing very long DNA sequences by decomposing the main 
matrix in accordance with the proposed algorithms. Moreover, the MPI technology will be 
implemented for computing each part of a  large matrix. Furthermore, the introduction of 
measures of the distance between text elements (terms) in the analyzed text documents to 
build its internal specific characteristic and document structure is also anticipated [1]. 

4	 System is available on web page: https://administracja.fmi.pk.edu.pl/~dyplomy.
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Appendix 1

The pseudo-code below describes part of the function LevDistParallelParts which 
provides the parallelization procedure of component matrix dpart. The procedure calls threads 
that are assigned to insert the one-dimensional array pth. For iteration of all elements of 
matrix dpart two loops for, loop in the line 16 and loop in the line 2, are required. The number 
of iterations within the loop in line 21 is restricted by the number of threads. Additionally, 
in line, 19 the automat of waiting mechanism is implemented and a loop with the array of 
locks point_lock is introduced. Based on this, the thread number p in loop for (line 16) waits 
for parallel thread number p-1 (line 19) until column i in thread p-1 has all values calculated. 
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input variables: number of parallel threads nTh, char fragText1[0..tM-
1] char fragText2[0..tN-1], initial values included in arrVertical and 
arrHorizontal arrays
declare: array of threads pth[0..nTh], array arrRanges[0..tN] of 
structure int form and
int to, array dpart (part of Levenshtein distance matrix)

calculate ranges for Y size of matrix dpart and save in arrRanges
for i from 0 to tM
        d[i, 0] := arrHorizontal[i]
for j from 0 to tN
        d[0, j] := arrVertical[j]

for p from 1 to nTh
 pth[p] := new Thread((num) of
 {
 int cost
 for i from 1 to tM
      
    point_lock[num] = i
    wait if i >= point_lock[num - 1]

    for j from arrRanges[num - 1].from to arrRanges[num - 1].to
         
    if substring of Text1 at (i – 1) = substring of Text2 at (j – 1) 
then 
    cost := 0  else  cost := 1
    
    dpart[i, j] := Minimum(
                   dpart[i - 1, j] + 1, 
                   dpart[i, j - 1] +1, 
                   dpart[i - 1, j - 1] +cost)

    end for (variable j) 
 end for (variable i) 
 increment +1 of point_lock[num]
 }
run thread pth[p]
end for (variable p)

wait for finish thread pth[nTh] (i.e. wait for all threads)
return structure of (array dpart[0..tM-1, tN-1], array dpart[tM-1, 
0..tN-1])
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In the pseudo code-above, some designations are taken:
pth – one-dimensional array of thread objects,
point_lock – one-dimensional array of locks,
arrRanges – one-dimensional array of calculated ranges of areas of component matrix,
num, p –thread number (i.e. number of part matrix),
dpart – component matrix of Levenshtein matrix x, 
LevDistParallelParts – the Levenshtein distance obtained with the parallelization procedure.


