
REPORTS ON MATHEMATICAL LOGIC
48 (2013), 101–115
DOI: 10.4467/20842589RM.13.005.1257

Tin PERKOV

TABLEAU-BASED BISIMULATION

INVARIANCE TESTING

A b s t r a c t. A tableau procedure that tests bisimulation

invariance of a given first-order formula, and therefore tests if that

formula is equivalent to the standard translation of some modal

formula, is presented. The test is sound and complete: a given

formula is bisimulation invariant if and only if there is a closed

tableau for that formula. The test generally does not terminate,

but it does if a given formula is bisimulation invariant, i.e., the

test is positive.

.1 Introduction

In the semantics of Kripke models, modal logic can be regarded as a frag-

ment of first-order logic, since the definition of truth of a modal formula is

expressible in the appropriate first-order language. It is more involved to

consider this correspondence in the opposite direction, by exploring those

Received 17 April 2012

102 TIN PERKOV

first-order formulas that are in essence modal. To keep the notation simple,

only the basic modal language (BML) is considered here, but all the results

are easily generalized to the multi-modal context. The alphabet of BML

consists of countably many propositional letters which we denote by p, q,

and so on, propositional constants � and ⊥, Boolean connectives ¬, ∨, ∧,
and modal operators ♦ and �. The syntax of modal formulas is given by

ϕ ::= p | ⊥ |� | ¬ϕ |ϕ1 ∨ ϕ2 |ϕ1 ∧ ϕ2 |♦ϕ |�ϕ,

where p ranges over the set of propositional letters. Some of the symbols

of the alphabet could have been left out and defined as abbreviations as

usual, but it will be more convenient in what follows to take these symbols

as basic. We often use ϕ → ψ instead of ¬ϕ ∨ ψ.

A Kripke model for BML is M = (W,R, V), where W is a non-empty

set, R is a binary relation on W , and V is the valuation, a function that

maps every propositional letter p to a subset V (p) ⊆ W .

Let σ denote the first-order vocabulary which consists of one binary

relation symbol R and a unary relation symbol P for every propositional

letter p. Clearly, a Kripke model can be considered a σ-structure: its

universe is |M| = W , and the interpretations of relation symbols are

RM = R and PM = V (p) for every p. Modal formulas are translated

to this first-order language by the standard translation, a mapping defined

as follows:

STx(p) = Px, for each propositional letter p

STx(⊥) = ⊥
STx(�) = �

STx(¬ϕ) = ¬STx(ϕ)

STx(ϕ ∨ ψ) = STx(ϕ) ∨ STx(ψ)

STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)

STx(♦ϕ) = ∃y(Rxy ∧ STy(ϕ))

STx(�ϕ) = ∀y(Rxy → STy(ϕ)),

where y in the last two clauses is a fresh variable. The Kripke semantics

for modal logic is usually defined in the metalanguage, which is omitted

here, but the semantics should be clear from the fact that a modal formula

TABLEAU-BASED BISIMULATION INVARIANCE TESTING 103

ϕ is true in w ∈ W , which is denoted by M, w � ϕ, if and only if M |=
STx(ϕ)[w], i.e., if and only if the standard translation of ϕ is true in M

under assignment of w to the variable x. As the standard translation is

actually a formally rewritten definition of the truth of a modal formula,

this fact is easily proved (cf. [1] for details).

So, every modal formula has a first-order equivalent (with one free vari-

able x) in this sense. The converse does not hold, since modal formulas are

bisimulation invariant, which first-order formulas need not be.

A bisimulation between models M = (W,R, V) and M′ = (W ′, R′, V ′)
is a non-empty relation Z ⊆ W ×W ′ such that:

(at) if wZw′, then for every p we have w ∈ V (p) if and only if w′ ∈ V ′(p);
(forth) if wZw′ and Rwv, then there is v′ such that vZv′ and R′w′v′;
(back) if wZw′ and R′w′v′, then there is v such that vZv′ and Rwv.

We say that a σ-formula F (x) is bisimulation invariant if the following

holds: if there is a bisimulation Z between M and M′ such that wZw′,
then we have M |= F (x)[w] if and only if M′ |= F (x)[w′].

By the Van Benthem Characterization Theorem, the bisimulation in-

variance is actually what characterizes the modal fragment of first-order

logic: a σ-formula is bisimulation invariant if and only if it is equivalent to

the standard translation of some modal formula. In other words, an ele-

mentary model property is modally definable if and only if it is bisimulation

invariant.

This is a result of great importance (see e.g., [1] for the proof) – it

establishes bisimulation invariance as an essentially modal model-theoretic

notion. Nevertheless, when it comes to practical applications, there is a

problem that van Benthem himself points out in [6]: it is undecidable

whether a given first-order formula is bisimulation invariant. This is proved

by a simple reduction of the problem of the validity of a first-order sentence,

which is well known to be undecidable, to the problem of bisimulation

invariance (cf. [6] for details).

Still, we can use Characterization Theorem to prove that a model prop-

erty is not modally definable, by giving an example that shows that this

property is not bisimulation invariant. On the other hand, to show that a

property is modally definable, we just need to give a modal formula that

defines it. Since it is not always easy to do this by hand, the aim of this

104 TIN PERKOV

paper is to develop a procedure that would do this automatically, even

though there cannot be a procedure that would decide bisimulation invari-

ance in all cases. It makes sense to try to do this, as much as it makes

sense to consider tests for the first-order validity problem. In fact, these

problems are closely related when it comes to decidability – not only does

the first-order validity reduce to the bisimulation invariance, but also the

bisimulation invariance reduces to the first-order validity.

Actually, the tableau procedure for testing bisimulation invariance that

is presented in this paper is based on the first-order tableau (or FO-tableau)

procedure (see e.g., [5] for the reference). A tableau is in essence a system-

atic search for a model that satisfies a given formula, so the validity of

a formula is tested by a tableau for its negation. The idea of bisimula-

tion invariance testing is also to search for a counterexample, but in this

case it means to construct two models and a bisimulation between them

that does not preserve the truth of a given formula. To be more pre-

cise, for a first-order formula F (x), the procedure tries to build M and M′

and a bisimulation between them such that wZw′ and M |= F (x)[w] but

M′
|= F (x)[w′].
In what follows it is shown that the bisimulation invariance tableau

simply reduces to the usual FO-tableau and has the same important prop-

erties: although the problem is undecidable, the tableau procedure is sound

and complete. The procedure terminates in case of a bisimulation invariant

formula. In case of a formula that is not bisimulation invariant, the proce-

dure might not terminate, because in some cases the only counterexamples

are infinite. However, with an adjustment that is presented in Section 3, it

will terminate if there exists a finite example. As usual, a counterexample

can be read off an open branch.

.2 Rules, soundness and completeness

Let F (x) be a σ-formula in which only variable x is free. A bisimulation

invariance tableau or a BI-tableau for F (x) is a tree obtained in the way

that is described in the following. Let U and U ′ be disjoint sets of constant
symbols, and let Z /∈ σ be a binary relation symbol. Each node of a BI-

tableau is a triple (A,B,C), where A is a σ∪U -formula or the empty word

ε, C is a σ∪U ′-formula or C = ε, and B is an atomic {Z}∪U ∪U ′-formula

TABLEAU-BASED BISIMULATION INVARIANCE TESTING 105

of the form aZc such that a ∈ U and c ∈ U ′, or B = ε. Instead of (A,B,C),

nodes will be denoted by A ·B ·C. In this notation, the empty word is not

denoted, so for example a node such that B = C = ε is denoted by A · ·
and so on.

Let A be any first-order formula. Denote by A(c/x) a formula obtained

from A by substituting every free occurrence of a variable x with a constant

symbol c. The root of a BI-tableau for F (x) is

F (w/x) · wZw′ · ¬F (w′/x)

To reduce the number of rules and to simplify proofs, we assume that

both F (w/x) and ¬F (w′/x) are in the negation normal form (NNF), i.e.,

rewritten (if necessary) as an equivalent formula in which only atomic sub-

formulas can be in the scope of negation, while ¬, ∨ and ∧ are the only

allowed Boolean connectives.

Formulas at the root suggest that by applying some rules we will try

to satisfy F at w and ¬F at w′ by building M and M′ starting from these

initial elements, together with a bisimulation Z between them such that

wZw′. So, formulas on the left-hand side of any node of a BI-tableau

concern M, on the right-hand side M′, and formulas in the middle concern

the (potential) bisimulation between them.

Each node of a BI-tableau is obtained from some formulas of its an-

cestors by applying one of the following rules. There are two groups of

rules. The first are standard FO-tableau rules, which apply either to some

formula on the left or on the right side. Each rule has the left side and the

right side version.

• ∨-rule
A1 ∨A2 ·B · C

A1 · · A2 · ·

A ·B · C1 ∨ C2

· · C1 · · C2

• ∧-rule
A1 ∧A2 ·B · C

A1 · ·
A2 · ·

A ·B · C1 ∧ C2

· · C1

· · C2

106 TIN PERKOV

• ∃-rule
∃xA ·B · C
A(a/x) · ·

A ·B · ∃xC
· · C(a′/x),

where a (resp. a′) is a new constant symbol, i.e., it does not occur at

any ancestor node.

• ∀-rule
∀xA ·B · C
A(a/x) · ·

A ·B · ∀xC
· · C(a′/x),

where a (resp. a′) is any constant symbol that occurs on the left (resp.

right) side of any ancestor or descendant node.

As usual, each of these rules is applied only once to each appropriate

node, except for the ∀-rule, which is applied once for each constant symbol

that occurs on the appropriate side of any node in a tableau.

The second group of rules are the bisimulation rules. These involve both

sides and the middle of a node, and apply only to atomic formulas. Unlike

the first-order rules, each of the bisimulation rules uses two of the ancestor

nodes to obtain a new node (except in the case when the root contains

both premises – see Example 5). These rules are applied only once to each

appropriate pair of nodes. So, different applications may share one premise,

but not both.

• (forth)-rule

Rab · ·
A · aZa′ · C

· bZb′ · Ra′b′

(where b′ is new)

• (back)-rule

· ·Ra′b′

A · aZa′ · C
Rab · bZb′·

(where b is new)

TABLEAU-BASED BISIMULATION INVARIANCE TESTING 107

• (at)-rule

Pa · ·
A · aZa′ · C

· · Pa′

· · Pa′

A · aZa′ · C
Pa · ·

These rules clearly resemble (forth), (back) and (at) conditions from

the definition of bisimulation. Atomic formulas appended by all of these

rules are depicted boxed. Bisimulation rules do not use nodes with boxed

formulas as premises.

We say that a formula (or a pair of formulas in the case of bisimulation

rules) in a tableau is used if the appropriate rule is applied. In case of

∀-rule, this means that it is applied for each constant symbol that occurs

on the appropriate side of any node.

A branch of a BI-tableau is closed if some formula and its negation

occur at some nodes of that branch. In examples, closed branches will be

terminated by a symbol X. A BI-tableau is closed if all of its branches

are closed. A branch (a BI-tableau) is open if it is not closed. A branch

is completed if it is closed or infinite or it cannot be further extended, i.e.,

all non-atomic formulas and all appropriate pairs of atomic formulas have

been used. A tableau is completed if all of its branches are completed.

Before turning to general arguments which show that the procedure is

sound and complete, consider several examples.

Example 1. The following is a BI-tableau for the formula ∃yRxy:

∃yRwy · wZw′ · ∀y¬Rw′y
Rwa · ·

·aZa′ · Rw′a′

· · ¬Rw′a′

X

(∃)
(forth)

(∀)

First the ∃-rule on the left side introduced a, then the (forth)-rule is

applied to introduce a′ on the right side, and finally, ∀-rule is applied on

the right side for a′. Note that ∀-rule would also apply for w′, but the

branch is already closed, so there is no need for further application of rules.

Since there is no branching, the tableau is closed. This means that we have

found a contradiction while trying to construct a counterexample, so the

108 TIN PERKOV

procedure gives the answer that the initial formula is bisimulation invariant.

Indeed, it is equivalent to the standard translation of ♦�.

Example 2. (F (x) = Px ∨ ∃yRyy)

Pw ∨ ∃yRyy · wZw′ · ¬Pw′ ∧ ∀y¬Ryy

· · ¬Pw′

· · ∀y¬Ryy

Pw · ·
· · Pw′ (at)

X

∃yRyy · ·
Raa · ·

· · ¬Rw′w′

(∧)

(∨)

(∃)
(∀)

The left branch is closed, but the right one is open and completed.

This means that there is a counterexample that shows that F (x) is not

bisimulation invariant. This example is clearly read off the open branch:

the model read off from the left side is M, with universe |M| = {w, a} and

interpretations RM = {(a, a)} and PM = ∅. From the right side we have

M′ with |M′| = {w′}, RM′
= ∅ and PM′

= ∅. All relation symbols that

do not occur in formulas of the tableau are interpreted in both models by

the empty set. A bisimulation between them is Z = {(w,w′)}. Indeed, it

is easy to see that M |= F (x)[w] and M′ |= ¬F (x)[w′], and that Z is really

a bisimulation.

TABLEAU-BASED BISIMULATION INVARIANCE TESTING 109

Example 3. (F (x) = ∃y(Rxy ∧ (Px ∨ Py)))

∃y(Rwy∧(Pw∨Py))·wZw′ ·∀y(¬Rw′y∨(¬Pw′∧¬Py))

Rwa ∧ (Pw ∨ Pa) · ·
Rwa · ·

Pw ∨ Pa · ·
·aZa′ · Rw′a′

· · ¬Rw′a′ ∨ (¬Pw′ ∧ ¬Pa′)

· · ¬Pw′ ∧ ¬Pa′

· · ¬Pw′ (∧)
· · ¬Pa′

Pw · ·
· · Pw′ (at)

X

Pa · ·
· · Pa′ (at)

X

· · ¬Rw′a′

X

(∃)
(∧)

(forth)

(∀)

(∨)

(∨)

The tableau is closed. Indeed, it is easy to see that F (x) is equivalent

to the standard translation of (♦� ∧ p) ∨ ♦p.

Example 4. Let F (x) = ∃y(Rxy ∧ ¬Rxy). This is clearly an unsatis-

fiable formula. Consider the tableau.

∃y(Rwy ∧ ¬Rwy) · wZw′ · ∀y(R′w′y ∨ ¬R′w′y)
Rwa ∧ ¬Rwa · ·

Rwa · ·
¬Rwa · ·

X

(∃)
(∧)

Rules are applied on the left side only, so this is actually an ordinary FO-

tableau that shows the unsatisfiability of F (x). The tableau is closed, and

rightly so, because any unsatisfiable formula is equivalent to ⊥. Similarly,

any valid formula is equivalent to �.

The following notion will be needed in the proof of soundness and com-

pleteness. Let F be a σ-formula and let P /∈ σ be a unary relation symbol.

110 TIN PERKOV

The P -relativization of F is σ ∪ P -formula FP defined inductively as fol-

lows: FP = F in the atomic case, the relativization is compositional with

all Boolean connectives, and for quantifiers we have: if F = ∀xA then

FP = ∀x(Px → AP), if F = ∃xA then FP = ∃x(Px ∧AP).

Let M be a σ∪P -structure such that PM is a σ-closed set (if a language

has no function symbols, this simply means that PM is non-empty and con-

tains all interpretations of constant symbols) and let MP be the submodel

of M with the universe |MP | = PM. Then, by the Relativization Lemma,

for any σ-sentence F we have that M |= FP if and only if MP |= F (see

e.g., [3] for the proof of the lemma).

Theorem. The bisimulation invariance tableau calculus is sound and

complete: a σ-formula F (x) is bisimulation invariant if and only if there

is a closed BI-tableau for F (x).

Proof. The BI-tableau reduces to the standard FO-tableau as follows.

We actually seek a model which is the disjoint union of a model for F (x)

and a model for ¬F (x), with a new relation Z between these two models

such that (at), (forth) and (back) are satisfied. The key in the reduction

is that these conditions can be phrased as first-order formulas. The only

danger is that (at) quantifies over unary relation symbols, but we actually

need only finitely many of them – those that occur in F (x).

Put σ′ = σ ∪ {Z,L,D}, where Z /∈ σ is a binary relation symbol and

L,D /∈ σ are unary relation symbols, representing the left and the right side

of a BI-tableau. Now consider (the conjunction of) the following sentences:

(1) ∃x∃x′(Lx ∧Dx′ ∧ FL(x) ∧ ¬FD(x′) ∧ Zxx′)

(2) ∀y∀y′(Zyy′ → (Py ↔ Py′)), for every P ∈ σ that occurs in F (x)

(3) ∀y∀y′∀z((Zyy′ ∧Ryz) → ∃z′(Dz′ ∧ Zzz′ ∧Ry′z′))

(4) ∀y∀y′∀z′((Zyy′ ∧Ry′z′) → ∃z(Lz ∧ Zzz′ ∧Ryz))

The sentence (1) represents the root of a BI-tableau, and (2)-(4) represent

(at), (forth) and (back), respectively. Assume for the moment that the

following claim holds:

(∗) If F (x) is not bisimulation invariant, then there is a model for (1)-(4).

TABLEAU-BASED BISIMULATION INVARIANCE TESTING 111

Now, to prove the soundness, assume we have a closed BI-tableau for F (x).

Using this BI-tableau, we prove that there is a closed FO-tableau for (1)-(4)

as follows. The root of a BI-tableau for F (x) translates into the application

of the first-order ∃-rule twice, starting from (1). The first group of BI-

tableau rules are actually the FO-tableau rules applied to formulas on the

left or on the right side, which translates to the same rules being applied to

some formulas of the FO-tableau for (1)-(4). The (at)-rule can be viewed as

shorthand for two applications of the ∀-rule starting from (2), and (forth)

and (back)-rules can be viewed as shorthand for three applications of the ∀-
rule followed by the ∃-rule starting from (3) and (4), respectively. Clearly,

the FO-tableau constructed in this way is closed. Due to the soundness of

the FO-tableau calculus (cf. [5]), in this way it is proved that there is no

model for (1)-(4), hence by (∗) we have that F (x) is bisimulation invariant,

as desired. So, to prove soundness, it remains to show (∗).
Assume F (x) is not bisimulation invariant, so there exist σ-structures

M,M′ and a bisimulation Z between them such that wZw′ and

M |= F (x)[w] but M′ |= ¬F (x)[w′]. Consider the σ ∪ {Z,L,D}-expansion
N of the disjoint union M

⊎
M′ such that LN = |M|, DN = |M′| and

ZN = Z. Now, the Relativization Lemma implies N |= FL(x)[w] and

N |= ¬FD(x)[w′]. Clearly, N is a model for (1)-(4).

For the completeness, let F (x) be a bisimulation invariant formula.

Systematically we build a completed (possibly infinite) BI-tableau for F (x)

by repeating the following:

• Make the next step of the systematic (see [5]) FO-tableau by applying

a first-order rule to a formula on the left side of an appropriate node.

• Apply the (forth)-rule if possible.

• Apply the left version of the (at)-rule if possible.

• Make the next step of the systematic FO-tableau for the right side.

• Apply the (back)-rule if possible.

• Apply the right version of the (at)-rule if possible.

Now, assume that there is an open branch in this systematic tableau.

Let S be the set of formulas occurring on the left side of each node of

this branch. Since the branch is open, there is no atomic A ∈ S such

112 TIN PERKOV

that ¬A ∈ S, so since the tableau is systematic, it is easy to see that S

is a Hintikka set (cf. [5]). Hence, S is satisfiable in a model M such that

|M| is the set of all constant symbols that occur in formulas from S, so

clearly M |= F (x)[w]. Similarly we conclude that there is M′ satisfying
the right side of the branch such that M′ |= ¬F (x)[w′]. Furthermore, since

the BI-tableau is completed, implying that bisimulation rules are applied

whenever needed, it is easy to see that formulas from the middle component

of all nodes of the branch define a bisimulation between M and M′ such
that wZw′. But this contradicts the assumption that F (x) is bisimulation

invariant. Hence, no branch of a systematic BI-tableau can be open, so this

tableau is closed, which implies completeness. �

.3 Termination

We say that a completed tableau terminates if it is closed or if it is open and

finite. For any bisimulation invariant formula, the systematic BI-tableau,

built as described in the proof of the completeness theorem, clearly termi-

nates, since it must be closed. Due to the undecidability, obviously some

systematic tableaux do not terminate, and any such tableau must be for

a formula that is not bisimulation invariant. Notably, any such formula

that does not have a finite counterexample does not have a terminating

tableau. Examples of this situation can be constructed from known exam-

ples of satisfiable first-order formulas with no finite model, via reduction of

the first-order validity problem to the bisimulation invariance problem. It

remains to examine formulas that are not bisimulation invariant and have

a finite counterexample. As Example 3 shows, some of these formulas will

have a terminating tableau and if this is the case, then a counterexample

can be read off an open branch. Moreover, with an improvement of the

rules that introduce new constant symbols, it can be achieved that all such

formulas have a terminating tableau. Since this trick is imported from the

standard FO-tableau, it will not be considered in full detail here, but just

informally described (for more details, and for the proof that this covers all

cases with finite counterexamples, see [2] and [4]).

The correction is the following: when applying an introducing rule, first

try out the already introduced constant symbols, one by one, until one of

TABLEAU-BASED BISIMULATION INVARIANCE TESTING 113

them results in a completed open branch. If all of them produce closed

branches, introduce a new constant symbol. Consider some examples.

Example 5. (F (x) = Rxx)

Rww · wZw′ · ¬Rw′w′

·wZw′ · Rw′w′

X

·wZa′ · Rw′a′

·wZw′ · Ra′w′
(forth)

(forth)

The root already contains both premises of the (forth)-rule, which

should introduce a new constant symbol. Branching follows, which is not

due to an application of ∨-rule, but it is this try-out branching. On the left

branch w′ is tried out and results with a closed branch. There is no other al-

ready introduced element, so the try-out failed and we need another branch

where a new element is introduced as usual. At this point, (forth) is applied

again, tried out at w′, which leads to a completed open branch, so there is

no need to try out further symbols, or to introduce a new constant symbol.

The initial formula is not bisimulation invariant, and an example for this is

read off the right branch: |M| = {w}, RM = {(w,w)}, PM = ∅ for all unary
relation symbols P , and |M′| = {w′, a′}, RM′

= {(w′, a′), (a′, w′)}, PM′
= ∅

for all P . The bisimulation is Z = {(w,w′), (w, a′)}. Note that, without

the modification of the introducing rules, the (forth)-rule would force the

introduction of new constant symbols infinitely. Also, note that trying out

a′ (which was not done because w′ already resulted in a completed open

branch) would produce another counterexample.

114 TIN PERKOV

Example 6. (F (x) = ∃y(Rxy ∧Ryx ∧ Py))

F (w/x) · wZw′ · ∀y(¬Rw′y ∨ ¬Ryw′ ∨ ¬Py)

Rww ∧Rww ∧ Pw · ·
Rww · ·
Pw · ·

· · Pw′

· · ¬Rw′w′ ∨ ¬Rw′w′ ∨ ¬Pw′

· · ¬Rw′w′

·wZa′ · Rw′a′ (forth)

· · Pa′ (at)

· · ¬Rw′a′ ∨ ¬Ra′w′ ∨ ¬Pa′ (∀)

· · ¬Pa′

X

· · ¬Rw′a′

X

· · ¬Ra′w′

·wZa′ · Ra′a′

· · ¬Pw′

X

(∃)
(∧)

(at)

(∀)

(∨)

(∨)

(forth)

The ∃-rule is tried out at w successfully. At the first application of the

(forth)-rule a new constant symbol is introduced. Trying out w′ at this

point would have resulted in a closed branch, which is not depicted for the

sake of readability of the tree. The second application of the (forth)-rule is

successfully tried out at a′. Again, trying out w′ would have failed.

The counterexample read off the only open branch is: |M| = {w},
RM = {(w,w)}, PM = {w}; |M′| = {w′, a′}, RM′

= {(w′, a′), (a′, a′)},
PM′

= {w′, a′}; Z = {(w,w′), (w, a′)}.

.4 Conclusion

BI-tableau is in essence an application of FO-tableau calculus to the prob-

lem of modal definability of elementary properties of Kripke models. Fur-

ther research should result in an effective procedure for obtaining a modal

formula equivalent to a given FO-formula which is bisimulation invariant.

TABLEAU-BASED BISIMULATION INVARIANCE TESTING 115

Hopefully, a closed BI-tableau will be useful as a starting point in building

a modal correspondent.

Furthermore, for the purpose of implementation of BI-tableau, we need

to make the procedure deterministic. The systematic tableau used in the

proof of completeness is probably a fine starting point for this, but note

that the examples presented in this paper are not done in this way – steps

are chosen with the purpose of terminating faster. Starting from ideas that

arise from examples, further work should include developing some general

strategies that would make the procedure faster (in cases when it does

terminate).

.Acknowledgements

I am grateful to Sophia Knight and the anonymous referees for valuable

corrections and suggestions.

.References

[1] J. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press,

2001.

[2] G. Boolos, Trees and Finite Satisfiability: Proof of a Conjecture of Burgess, Notre

Dame Journal of Formal Logic 25 (1984), pp. 193–197.

[3] H.-D. Ebbinghaus, J. Flum, W. Thomas, Mathematical Logic, Springer-Verlag, 1984.

[4] R. Jeffrey, J. P. Burgess, Formal Logic: Its Scope and Limits, Hackett, 2006.

[5] R. M. Smullyan, First-Order Logic, Springer-Verlag, 1968.

[6] J. van Benthem, Exploring Logical Dynamics, Studies in Logic, Language and Infor-

mation, CSLI Publications & FoLLI, Stanford, 1996.

Polytechnic of Zagreb

Avenija V. Holjevca 15

10000 Zagreb, Croatia

tin.perkov@tvz.hr

