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ON DEFINABLE COMPLETENESS

FOR ORDERED FIELDS

A b s t r a c t. We show that there are 0-definably complete

ordered fields which are not real closed. Therefore, the theory of

definably with parameters complete ordered fields does not follow

from the theory of 0-definably complete ordered fields. The men-

tioned completeness notions for ordered fields are the definable

versions of completeness in the sense of Dedekind cuts. In ear-

lier joint work, we had shown that it would become successively

weakened if we just required nonexistence of definable regular gaps

and then disallowing parameters. The result in this note shows

reducing in the opposite order, at least one side is sharp.
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.1 Introduction

Real closed fields are precisely the definably with parameters Dedekind

complete ordered fields. We show that a non-real-closed field may still be

0-definably complete. This answers a natural question, as in [3, Problem

17(i)], we raised earlier with J. S. Eivazloo. In the main step, for a cer-

tain ordered field of generalized power series, it is shown that the set of

infinitesimals is not 0-definable (the latter is due to Lou van den Dries).

In [5, 4] we had already shown the non-implication for the regular cut

variant. Recall that for an ordered field K, a gap C ⊂ K (namely, a cut

which has no least upper bound in K) is regular if for each ε ∈ K>0 we have

that C + ε �⊆ C (i.e., it is of zero distance to its complement). The ordered

field K is called Scott complete if it does not have any proper extensions

to an ordered field in which it is dense, equivalently it does not have any

regular gaps.

Among the notions of definably (with or without parameters) Scott

complete ordered fields we considered in [5] were DpSrcCOF in the pa-

rameter case and D∅SrcCOF in the parameter-free case. Their models are

ordered fields with no definable regular gaps with or without parameters

respectively. We showed there that if an ordered field K is a proper dense

sub-field of its real closure, then K � DpSrcCOF (see [5, Lemma 3.1]).

As we mentioned already, definably complete (with parameters) ordered

fields are exactly the real closed fields, in notation: RCF ≡ DpDCOF .

A weaker form of half of this fact is RCF � DpSrcCOF . However the

converse of the latter fails as we record below.

Fact 1.1. We have DpSrcCOF � DpDCOF (that is DpSrcCOF �
RCF ).

Indeed there are Scott complete ordered fields which are not real closed.

One may take the Scott completion of any ordered field which is not dense

in its real closure, e.g. R(x) with x infinitely large (no rational function of

x is between
√
x and 2

√
x for example).

The following was mentioned in [5, Note added in proof], and in [4, Be-

low Question 5.1].

Fact 1.2. We have D∅SrcCOF � DpSrcCOF .

Now consider the relaxing of DpDCOF again in two steps but in the

opposite order, first dropping parameters and then restricting to regular
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gaps. In the next section, we show that there are 0-definably complete

ordered fields which are not real closed, i.e. D∅DCOF � DpDCOF (see

Theorem 2.1). The status of the other half of this reverse weakening is left

as a question:

Question 1.1. Is it the case that D∅SrcCOF � D∅DCOF?

It is known that the field of rational functions R(x), ordered with x > R,
0-defines the irregular gap of infinitesimals. One may be able to argue that

this field does not 0-define any regular gaps.

.2 0-definably complete ordered fields need not be real

closed

Recall that for an ordered field F and ordered abelian group G, the gen-

eralized power series field F ((tG)) consists of functions G → F with well

ordered support (making t a positive F -infinitesimal) with the obvious ad-

dition and multiplication.

Another ingredient we need is the following. Robinson-Zakon, see [6]

(and [7] for some of the proofs), defined an ordered abelian group M �= {0}
to be regularly dense if for any positive integer n and elements a, b ∈ M

with a < b, there is an element u ∈ M such that a < nu < b. Every

dense additive subgroup of R is regularly dense. In particular, the ordered

(additive) group of dyadic rationals (the standard rationals which have a

representation where the denominator is a power of 2) is regularly dense.

This group is going to appear in the proof of our theorem below.

We need the Robinson-Zakon [op. cit.] necessary and sufficient condi-

tion for the elementary equivalence of two regularly dense groups A and B,

namely they have the same prime invariants for every prime p. This means

the quotient groups A
pA and B

pB are either both infinite (not necessarily of

the same cardinalities), or they are both of the same finite order.

We also employ part of the Ax-Kochen-Ershov Principle [1, 2]: Two

valued fields both of which with residue fields of characteristic 0, are el-

ementarily equivalent if and only if their residue fields are elementarily

equivalent (in the language of ordered rings) and their value groups are

elementarily equivalent (in the language of ordered groups).



96 MOJTABA MONIRI

.1 Introduction

Real closed fields are precisely the definably with parameters Dedekind

complete ordered fields. We show that a non-real-closed field may still be

0-definably complete. This answers a natural question, as in [3, Problem

17(i)], we raised earlier with J. S. Eivazloo. In the main step, for a cer-

tain ordered field of generalized power series, it is shown that the set of

infinitesimals is not 0-definable (the latter is due to Lou van den Dries).

In [5, 4] we had already shown the non-implication for the regular cut

variant. Recall that for an ordered field K, a gap C ⊂ K (namely, a cut

which has no least upper bound in K) is regular if for each ε ∈ K>0 we have

that C + ε �⊆ C (i.e., it is of zero distance to its complement). The ordered

field K is called Scott complete if it does not have any proper extensions

to an ordered field in which it is dense, equivalently it does not have any

regular gaps.

Among the notions of definably (with or without parameters) Scott

complete ordered fields we considered in [5] were DpSrcCOF in the pa-

rameter case and D∅SrcCOF in the parameter-free case. Their models are

ordered fields with no definable regular gaps with or without parameters

respectively. We showed there that if an ordered field K is a proper dense

sub-field of its real closure, then K � DpSrcCOF (see [5, Lemma 3.1]).

As we mentioned already, definably complete (with parameters) ordered

fields are exactly the real closed fields, in notation: RCF ≡ DpDCOF .

A weaker form of half of this fact is RCF � DpSrcCOF . However the

converse of the latter fails as we record below.

Fact 1.1. We have DpSrcCOF � DpDCOF (that is DpSrcCOF �
RCF ).

Indeed there are Scott complete ordered fields which are not real closed.

One may take the Scott completion of any ordered field which is not dense

in its real closure, e.g. R(x) with x infinitely large (no rational function of

x is between
√
x and 2

√
x for example).

The following was mentioned in [5, Note added in proof], and in [4, Be-

low Question 5.1].

Fact 1.2. We have D∅SrcCOF � DpSrcCOF .

Now consider the relaxing of DpDCOF again in two steps but in the

opposite order, first dropping parameters and then restricting to regular

ON DEFINABLE COMPLETENESS FOR ORDERED FIELDS 97

gaps. In the next section, we show that there are 0-definably complete

ordered fields which are not real closed, i.e. D∅DCOF � DpDCOF (see

Theorem 2.1). The status of the other half of this reverse weakening is left

as a question:

Question 1.1. Is it the case that D∅SrcCOF � D∅DCOF?

It is known that the field of rational functions R(x), ordered with x > R,
0-defines the irregular gap of infinitesimals. One may be able to argue that

this field does not 0-define any regular gaps.

.2 0-definably complete ordered fields need not be real

closed

Recall that for an ordered field F and ordered abelian group G, the gen-

eralized power series field F ((tG)) consists of functions G → F with well

ordered support (making t a positive F -infinitesimal) with the obvious ad-

dition and multiplication.

Another ingredient we need is the following. Robinson-Zakon, see [6]

(and [7] for some of the proofs), defined an ordered abelian group M �= {0}
to be regularly dense if for any positive integer n and elements a, b ∈ M

with a < b, there is an element u ∈ M such that a < nu < b. Every

dense additive subgroup of R is regularly dense. In particular, the ordered

(additive) group of dyadic rationals (the standard rationals which have a

representation where the denominator is a power of 2) is regularly dense.

This group is going to appear in the proof of our theorem below.

We need the Robinson-Zakon [op. cit.] necessary and sufficient condi-

tion for the elementary equivalence of two regularly dense groups A and B,

namely they have the same prime invariants for every prime p. This means

the quotient groups A
pA and B

pB are either both infinite (not necessarily of

the same cardinalities), or they are both of the same finite order.

We also employ part of the Ax-Kochen-Ershov Principle [1, 2]: Two

valued fields both of which with residue fields of characteristic 0, are el-

ementarily equivalent if and only if their residue fields are elementarily

equivalent (in the language of ordered rings) and their value groups are

elementarily equivalent (in the language of ordered groups).



98 MOJTABA MONIRI

Lemma 2.1. (L. van den Dries) The set of infinitesimals of R((tΓ)),
where Γis the ordered (additive) group of dyadic rationals, is not 0-definable.

Proof. (This lemma and its proof are due to L. van den Dries, private

communication.) With Γ as in the lemma, let Γ′ = Q ⊕ Γ be ordered so

that the summand Q is convex in Γ′.

We claim that Γ ≡ Γ′. To see this, note that Γ′ is dense since both

summands Q and Γ are dense. Also, the first direct summand Q is divisible,

therefore the prime invariants of Γ′ are the same as those of Γ (that is p

itself, for any p, not any higher power of p). Therefore, by the Robinson-

Zakon criterion cited above, Γ ≡ Γ′.

Let F = R((tΓ)) and K = R((tΓ′
)). By the Ax-Kochen-Ershov principle

mentioned above, we have F ≡ K as they even have the same residue field

R of characteristic zero, and we have shown the value groups Γ and Γ′ are

elementarily equivalent.

Now the natural valuation v : K �=0 → Γ′ can be coarsened to a valuation

v∗ : K �=0 → Γ′/Q = Γ and by the AKE principle again, (K, v) ≡ (K, v∗) as

valued fields. Now these two valued fields have the same underlying field K

but different sets of infinitesimals. E.g., u = t(1,0) as an element of (K, v)

has the positive value (1, 0), so u is an infinitesimal in (K, v). But as an

element of (K, v∗), it has value 0 and is therefore not infinitesimal. Hence

the infinitesimals of K do not form a 0-definable set and consequently the

same is true for F . �

Theorem 2.1. Parameter-free definable Dedekind completeness for or-

dered fields is strictly weaker than definable completeness:

D∅DCOF � DpDCOF (≡ RCF ).

Proof. We use the same field F = R((tΓ)) as in the lemma above.

Note that the value group Γ of F is not divisible, so our ordered field F

is not real closed, equivalently it fails (parameter) definable completeness.

An explicit example is the definable (with parameters) gap of all elements

which are below t
1
3 .

To show F does not have any 0-definable gaps, we argue as in [4, under

Question 5.1]. Let G be a (proper) gap in F . Assume G ∩ F>0 �= ∅,
otherwise an argument similar to the one below would work.

Case 1: Suppose there is an infinitely large element a ∈ F>0, say a =

λt−γ +Lower Terms, such that a ∈ G. Note that λ, γ > 0. Pick b ∈ F \G,
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say b = λ′t−γ′
+ Lower Terms. Since G is downward closed in F , we have

a < b (and γ ≤ γ′). Take γ′′ ∈ Γ such that γ′′ > γ′

γ . Consider the field

automorphism f on F induced by substituting tγ
′′
for t (there could be

infinitely many occurrences of t). We have f(a) > b. So G is not closed

under f , and hence G cannot be 0-definable.

Case 2: Suppose G = FFinite (the set of limited elements in F , i.e.

those bounded in absolute value by a natural number). Then G cannot

be 0-definable in F since otherwise the set of infinitesimals would be 0-

definable: x > 0 is an infinitesimal iff 1
x �∈ G. This would violate the

lemma above.

Case 3: Suppose G is a proper gap in the ordered ring FFinite. In

this case, G ∩ R has a least upper bound a ∈ R. There are the following

sub-cases:

Sub-case 3a1, respectively 3a2: Suppose G is the downward closure,

respectively complement of the upward closure, of the whole monad in F of

a. Note that an element ε > 0 is an infinitesimal if and only if G is closed

under adding ε. By the lemma, G cannot be 0-definable in F .

Sub-case 3b: Suppose G intersects the monad of a in F but does not

include all of it. Pick λ, λ′ ∈ R and γ, γ′ ∈ Γ>0 such that x := a + λtγ +

Lower Terms < G < y := a + λ′tγ
′
+ Lower Terms. Again there would be

automorphisms g under which G is not closed (g can be constructed similar

to f in case 1 to move x above y). �

Let us note that in case 2 and sub-cases 3a1, 3a2, one cannot use the

argument of case 1 and sub-case 3b. Any automorphism of F set-wise

preserves the monad of any real number, and consequently also FFinite and

both kinds of gaps mentioned in 3a1, 3a2. On the other hand, for case 1

many gaps are not of the monad kind. E.g., the set of elements in F which

are less than t−
1
3 (and similarly elements below t

1
3 for case 3b).
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Note Added in Proof. Regarding Question 1.1, Somayyeh Tari has

communicated to the author that if we expand the language of ordered

rings by a new unary predicate symbol, we have the following: If R is a real

closed field and V is a proper convex subring of R, then any parameter-free

definable gap in (R, V ) is irregular. This variant of the question would

therefore have witnesses to the unprovability. The proof uses quantifier-

elimination for Th(R, V ), as established by Cherlin and Dickmann in their

1983 paper in Ann. Pure Appl. Logic 25:3 (1983), 213–231.
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Éva JUNGABEL

ON SOME

HOMOMORPHISM-HOMOGENEOUS

POINT-LINE GEOMETRIES

A b s t r a c t. A relational structure is homomorphism-homogene-

ous if every homomorphism between finite substructures extends

to an endomorphism of the structure. A point-line geometry is

a non-empty set of elements called points, together with a collec-

tion of subsets, called lines, in a way that every line contains at

least two points and any pair of points is contained in at most one

line. A line which contains more than two points is called a reg-

ular line. Point-line geometries can alternatively be formalised

as relational structures. We establish a correspondence between

the point-line geometries investigated in this paper and the first-

order structures with a single ternary relation L satisfying certain

axioms (i.e. that the class of point-line geometries corresponds

to a subclass of 3-uniform hypergraphs). We characterise the

homomorphism-homogeneous point-line geometries with two reg-

ular non-intersecting lines. Homomorphism-homogeneous point-

line geometries containing two regular intersecting lines have al-

ready been classified by Mašulović.
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