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Vincenzo DIMONTE

THE *-PRIKRY CONDITION

A b s t r a c t. In this paper we isolate a property for forcing

notions, the *-Prikry condition, that is similar to the Prikry con-

dition but that is topological: A forcing P satisfies it iff for every

p ∈ P and for every open dense D ⊆ P, there are n ∈ ω and

q ≤∗ p such that for any r ≤ q with l(r) = l(q) + n, r ∈ D, for

some length notion l. This is implicit in many proofs in literature.

We prove this for the tree Prikry forcing and the long extender

Prikry forcing.

The key notion in this paper is Prikry forcing and its generalizations.

Prikry forcing adds a cofinal ω sequence to a measurable cardinal, and its

generalizations usually add more of such ω-sequences, in different settings.

What all these forcings have in common is the “Prikry condition”, a prop-

erty that is fundamental in proving the typical characteristics of Prikry

forcings (for example the fact that they do not add bounded sets). We

call “*-Prikry condition” a slight modification of the original condition:

it is needed many times in literature (see for example [13] and [8], yet
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it is never defined. For example, it is used in [4], [14] and [15] to prove

λ-goodness of Prikry-type forcing, essential in the study of forcing with

I0,1 in [8] as a means to prove the original Prikry condition, and in [13] to

prove that “simple” equivalence relation naturally extend to generic exten-

sions. Moreover, while the original Prikry condition is a concept related to

forcing, the *-Prikry condition is a topological property, that depends only

on the topology of the partial orders involved.

The proof of the *-Prikry condition for the original Prikry forcing is

classic, but the more sophisticated the forcing is, the more difficult it is to

find a proof of the *-Prikry condition for it (see for example the long section

5 in [14] and [15]). Sometimes it is proved from scratch for a particular

forcing (see [9]), other times it is just assumed (see [13]). In this paper

we want to outline a strategy to prove it that can be applied to many

(arguably all the “classic” ones) Prikry-like forcings, and we are going to

apply this strategy to the tree Prikry forcing and to the Gitik-Magidor long

extender Prikry forcing. We feel that these two examples already cover

much ground: for example supercompact Prikry forcings are just measure

forcings, so the techniques from the classical and the tree Prikry forcing

cases apply, and with almost no further effort, the strategy works also for

diagonal supercompact Prikry forcing, both the original by Gitik-Sharon

[7] and the variation by Neeman [10]. On the other hand Gitik-Magidor

long extender Prikry forcing exemplifies all the other Prikry forcings that

add many Prikry sequences via an extender.

The author would like to thank the FWF (Austrian Science Fund) for

its generous support through project M 1514-N25, the MIUR (Ministry of

Instruction, University and Research) for its support through the program

“Rita Levi Montalcini 2013” and the kind hospitality of the Kurt Gödel

Research Center, Beijing Normal University and the Chinese Academy of

Sciences.

.1 Prikry and tree Prikry forcing

Let κ be a measurable cardinal, with normal measure U .

1 For more on I0 and beyond, see for example [1], [2], or [3].
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Definition 1.1. The Prikry forcing P on κ via U is the set of conditions

(s,A) such that s ∈ κ<ω, A ∈ U and max s < minA. We say that (t, B) ≤
(s,A) if s ⊆ t, B ⊆ A and t \ s ⊆ A.

We introduce some basic notation and terminology about trees. Trees

are a typical structure that is investigated in combinatorics. Let α be an

ordinal. For any s ∈ [α]n, lh(s) = n. A (descriptive set-theoretical) tree on

α is a subset of [α]<ω closed under initial segments. If T is a tree, for any

s ∈ T , denote Ts = {t ∈ T : t ⊆ s ∨ s ⊆ t}, SucT (s) = {β ∈ α : t�〈β〉 ∈ T},
Ts� = {t : s�t ∈ T} and finally for any n ∈ ω, Levn(T ) = {s ∈ T : lh(s) =

n}. The trunk of T is the longest s such that ∀t ∈ T s ⊆ t.

Prikry forcing is useful because it is a very “delicate” forcing [5]: it

does not add bounded subsets of κ, and is κ+-cc, so it does not change

the cardinal structure above κ. In other words, it makes κ singular while

changing the universe as little as possible.

We now define the tree Prikry forcing (see [5] Section 1.2):

Definition 1.2. Let κ be a measurable cardinal. Fix U a measure on

κ. The tree Prikry forcing P is the set of conditions p = (sp, T
p), where sp

is a finite sequence of ordinals in κ, and T p is a (descriptive set-theoretical)

tree of finite increasing sequences in κ with stem sp, such that for any

t ∈ T p, SucT p(t) ∈ U . We say that p ≤ q if sp ⊇ sq and T p ⊆ T q. We say

that p ≤∗ q if p ≤ q and sp = sq. For any p ∈ P and t ∈ T p, we write p⊕ t

for (t, (T p)t).

The difference between the two forcings is minimal: the only difference

is that the standard Prikry forcing uses a normal ultrafilter, while for tree

Prikry forcing normality is not needed. In most of the applications the

ultrafilters are normal, and in these cases the two forcing notions produce

the same results (compare [5] Theorems 1.10 and 1.25), so using one or the

other is often a matter of taste.

At first glance, Prikry forcing does not seem delicate at all, as it is not

even ω-closed. But ≤∗ is actually κ-closed, and the crucial notion that

makes everything work is the Prikry condition:

Lemma 1.3 (Prikry condition). Let P be a Prikry forcing or a tree

Prikry forcing on κ, and let σ be a statement of the forcing language. Then

for any p ∈ P there exists a q ≤∗ p such that q � σ or q � ¬σ.
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In many cases (obviously in [4], but also in [14], for example), the Prikry

condition is not that useful, but a slight variation actually it is.

Definition 1.4. Let (P,≤) be a forcing notion, and ≤∗ ⊆ ≤ be an

order. We say that P satisfies the *-Prikry condition if:

• there exists a function l : P → ω measuring the length of the condi-

tion, that is l(1P) = 0 and for any p, q ∈ P, if p ≤ q then l(p) ≥ l(q),

and p ≤∗ q iff l(p) = l(q);

• for every p ∈ P and for every open dense D ⊆ P, there are n ∈ ω and

q ≤∗ p such that for any r ≤ q with l(r) = l(q) + n, we have that

r ∈ D.

Such condition is usually satisfied by forcings that satisfy the Prikry

condition, and the proofs tend to be very similar. In the Prikry case the

combinatorial core of it is the Rowbottom Theorem:

Theorem 1.5 (Rowbottom, [11]). Suppose that κ is measurable and U

is a normal ultrafilter on κ. Then for any γ < κ and any f : [κ]<ω → γ,

there is a set in U homogeneous for f .

Lemma 1.6. Prikry forcing on κ has the *-Prikry condition.

Proof. It is actually a very well known fact, see for example Lemma

1.13 in [5]. For completeness, we write the proof here.

Let U be the ultrafilter that generates the Prikry forcing P. For any

p = (s,A) ∈ P, define l(p) = lh(s). Let p = (s,A) and D ⊆ P be open

dense. Let h : [A]<ω → 2 be the partition such that h(t) = 1 iff there

exists a C such that (s�t, C) ∈ D. By the Rowbottom Theorem, there

exists B ⊆ A in U homogeneous for h, i.e. such that for every n ∈ ω and

s1, s2 ∈ [B]n, h(s1) = h(s2). Since D is dense, we get that there exists

n ∈ ω such that for any m > ω and for all t ∈ [B]m we have h(t) = 1.

Let for each t ∈ [B]<ω, Ct ∈ U be such that (s�t, Ct) ∈ D, and C be the

diagonal intersection of all the Ct. Then (s,B ∩C) and n witness that the

*-Prikry condition holds for (s,A). �

The following is the most basic non-immediate example, and the method

used in the proof is also the base for the more sophisticated methods in the

next sections:
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Lemma 1.7. Let κ be a measurable cardinal. Then the tree Prikry

forcing P on κ has the *-Prikry condition.

Proof. Fix U a measure on κ. For any p = (sp, T
p) ∈ P, we define

l(p) = lh(sp). The proof is in three steps:

• in the first step, we modify the tree T p so that if some condition r ≤ p

is in D, then all the conditions t ≤ p such that sr = st are in D;

• in the second step, we modify the previous tree, so that if some con-

dition r ≤ p with T r = (T p)sr is in D, then all the conditions t ≤ p

with T t = (T p)st and l(r) = l(t) are in D;

• in the third step, we put the two claims together, and prove the

lemma.

Claim 1.8 (First step). For any D open dense set and for any p ∈ P,
there exists q ≤∗ p such that if there exists r = (sr, T

r) ≤ q (i.e. r ≤∗ q⊕sr)

such that r ∈ D, then q ⊕ sr ∈ D.

Proof of claim. For any p = (sp, T
p) ∈ P, then T p is isomorphic to

the complete tree TC, and 1P = (〈〉, TC), therefore Pp = {q ∈ P : q ≤ p}
is isomorphic to P, so we can suppose p = 1P. The proof is by induction.

Informally, we consider T 1P , and we restrict it by asking, at each level,

whether there is a possible way to shrink it to reach D: if there is, then we

just shrink it; otherwise we do nothing. More formally, we define Sn, trees

on κ, for n ∈ ω by induction:

• if there exists a r ≤∗ 1P such that r ∈ D, then let S0 be T r; otherwise

S0 = T 1P (note that in the first case (〈〉, S0) = r ∈ D);

• given Sn, first we require that Sn+1 � [κ]n+1 = Sn � [κ]n+1; then for

any s ∈ Levn+1(Sn), if there exists a r ≤ (〈〉, Sn) such that sr = s

and r ∈ D, then let (Sn+1)s = (T r)s; otherwise (Sn+1)s = (Sn)s (note

that in the first case (sr, (Sn+1)sr) = r ∈ D).

Let S = ∩n∈ωSn and q = (〈〉, S). Then q is as desired: since the n-th level is

changed just in the first n steps, we have that for any s ∈ S of length n ∈ ω,

SucS(s) = ∩m≤n SucSm(s) ∈ U , therefore q ∈ P. Let t ≤∗ q⊕ st, i.e. st ∈ S

and T t ⊆ S, with t ∈ D. Suppose lh(st) = n. Then also st ∈ Sn, as S �
[κ]n+1 = Sn � [κ]n+1, so t ≤ (〈〉, Sn). This means that in the construction

the first case was true, therefore q ⊕ st = (st, Sst) ≤ (st, (Sn+1)st) ∈ D. �
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T 1P

S0

∈ R
/∈ R

Figure 1: We draw with a dashed line the nodes not in R, and with a normal

line the nodes in R. In this example, the “majority” of nodes of length 1

of T 1P are not in R, therefore A0
〈〉 = SucT 1P (〈〉) \B0

〈〉 ∈ U and we delete all

the nodes that are not in A0
〈〉 and everything above to construct S0.

Claim 1.9 (Second step). For any D open dense set and for any p ∈ P,
there exist q ≤∗ p and n ∈ ω such that for any s1, s2 ∈ T q such that

l(s1) = l(s2) = n, q ⊕ s1 ∈ D iff q ⊕ s2 ∈ D.

Proof. We can still assume p = 1P. Let R = {s ∈ T 1P : p⊕ s ∈ D}.
Informally, we are climbing up level by level, deleting at each level

either the branches that are in R or the ones that are not, so that the

sets of successors are still in U . We define by induction the trees Sn and

Sn,m, with n,m ∈ ω. The first step, then, will be simple: let B0
〈〉 = {δ ∈

SucT 1P (〈〉) : 〈δ〉 ∈ R}. Then exactly one among B0
〈〉 and SucT 1P (〈〉) \B0

〈〉 is

in U , and we call it A0
〈〉. Then let 〈µ0, . . . , µl〉 ∈ S0 iff µ0 ∈ A0

〈〉 (see Figure

1).
Note that in S0, SucS0(〈〉) = A0

〈〉 ⊆ SucT 1P (〈〉), while for all s ∈ S0 of

length ≥ 1, SucS0(s) = SucT 1P (s), and the sequences in S0 of length 1 are

either all in R or all outside.
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The second step adds another layer of complexity. First, for any 〈µ〉 ∈
S0 we restrict its successors so that they are either all in R or all outside

R. Therefore let

B1
〈µ〉 = {δ ∈ SucS0(〈µ〉) : 〈µ, δ〉 ∈ R}

for any 〈µ〉 ∈ SucS0(〈〉). Then exactly one among B1
〈µ〉 and SucS0(〈µ〉)\B1

〈µ〉
is in U , and we call it A1

〈µ〉. Now define S1,0 so that 〈µ0, . . . , µl〉 ∈ S1,0 iff

µ0 ∈ SucS0(〈〉) and µ1 ∈ A1
〈µ0〉 (see Figure 2). Note that for all s ∈ S1,0

with lh(s) = 1, SucS1
0
(s) = A1

〈s(0)〉 ⊆ SucS0(s), while if lh(s) �= 1 then

SucS1
0
(s) = SucS0(t).

This is not enough. One by one, each of the 2-sequences that share

the same root are either all in R or all outside, but it can be that all the

2-sequences that start with µ1 are in R, and all the 2-sequences that start

with µ2 are not in R. Therefore we must choose only the µ’s that give

a consistent result.

Let

B1
〈〉 = {µ ∈ SucS0(〈〉) : SucS1,0(〈µ〉) = B1

〈µ〉},

i.e. the set of µ’s such that for any δ ∈ SucS1,0(〈µ〉), 〈µ, δ〉 ∈ R. Then

exactly one among B1
〈〉 and SucS0(〈〉) \ B1

〈〉 is in U . Let A1
〈〉 be it. Now

define S1,1 = S1 as 〈µ0, . . . , µl〉 ∈ S1 iff 〈µ0, . . . , µl〉 ∈ S1,0 and µ0 ∈ A1
〈〉

(see Figure 2). Note that for all s ∈ S1, if lh(s) = 0 then SucS1(s) = A1
〈〉 ⊆

SucS1,0(s), otherwise SucS1(s) = SucS1,0(s). The sequences in S1 of length

2 are either all in R or all outside it.

By induction the construction continues level-by-level, each time start-

ing with Sn+1,0 ⊆ Sn, and then going down to Sn+1, a tree such that

all the n + 1-branches are either all in R or all outside it. More for-

mally, suppose Sn is defined. For all t ∈ Sn, lh(t) = n + 1, define

Bn+1
t = {δ ∈ SucSn(t) : t�〈δ〉 ∈ R}. Then exactly one among Bn+1

t and

SucSn(t) \ Bn+1
t is in U , and we call it An+1

t . Define 〈µ0, . . . , µl〉 ∈ Sn+1,0

iff 〈µ0, . . . , µl〉 ∈ Sn and µn+1 ∈ An+1
〈µ0,...,µn〉. Note that for all s ∈ Sn+1,0,

lh(s) = n+ 1,

SucSn+1,0(s) = An+1
s ,

otherwise SucSn+1,0(s) = SucSn(s).
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S0

∈ R
/∈ R

S1,0

S1

Figure 2: We continue the example of the previous figure. The first passage

is, for each node of length one of S0, to prune the successor nodes that are

in the “minority”, so that in S1,0 any node of length 1 has either all the

immediate successors in R, or all the immediate successors not in R. We

tag with a black point the nodes in the first case, and with a white point the

nodes in the second case. The nodes tagged with a black point are those in

B1
〈〉. Now, the “majority” of nodes have the black point, so A1

〈〉 = B1
〈〉 ∈ U .
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Let t ∈ Levm Sn and suppose that Sn+1,n−m, Bn+1
s andAn+1

s are defined

for all s ∈ Sn+1 with lh(s) = m+ 1. Let

Bn+1
t = {δ ∈ SucSn+1(t) : SucSn+1,n−m(t�〈δ〉) = Bn+1

t�〈δ〉}.

Then exactly one among Bn+1
t and SucSn+1(t) \Bn+1

t is in U . Let An+1
t be

it.

SupposeAn+1
t is defined for all t ∈ Sn+1 of lengthm. Then 〈µ0, . . . , µl〉 ∈

Sn+1,n+1−m iff 〈µ0, . . . , µl〉 ∈ Sn+1,n−m and µi ∈ An+1
〈µ0,...,µm〉. Note that for

all s ∈ Sn+1,n+1−m of length n+ 1−m,

SucSn+1,n+1−m(s) = An+1
s ,

otherwise SucSn+1,n+1−m(s) = SucSn+1,n−m(s). Call Sn+1,n+1 = Sn+1. Then

all the sequences in Sn+1 of length n + 1 either are all in R or all outside

it.

Now, let S =
⋂

n∈ω Sn. The last remark is sufficient to prove the

claim. We prove that (〈〉, S) ∈ P. It suffices to prove that for any t ∈ S,

SucS(t) ∈ U . So let t ∈ S, lh(t) = n. Then SucS(t) will be modified in the

construction of S only in the stages Sn+i,n, with i ∈ ω, and Sn,0, therefore

SucS(t) =
⋂
i∈ω

An+i
t ,

that is a countable intersection of elements of U , and therefore in U . �

Claim 1.10 (Third step). For any p ∈ P and for any D open dense set

there exist a q ≤∗ p and an n ∈ ω such that for any t ≤ q with lh(t) = n,

t ∈ D.

Proof of claim. Pick a q′ ≤∗ p as the first claim and a q ≤∗ q′ as

the second claim. By density, there exists a r ≤ q, r ∈ D. Let n = lh(r).

Then by the first claim q′ ⊕ sr ∈ D. Since r ≤ q, sr ∈ T q, and since q ≤ q′,

q ⊕ sr = (sr, (T
q)sr) ≤ q′ ⊕ sr ∈ D. By the second claim, then, all the

extensions of q of the same length of r are in D. �

.2 Extender-based Prikry forcing

The three-steps approach can be used in many other situations than the

tree Prikry forcing. As an example, we show how it is useful for the Gitik-
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Magidor long extender Prikry forcing. As the forcing is decidedly more

complex, the proof is more involved, but the main steps are the same:

• In every Prikry forcing the conditions have componenents of two

types: a base, made of a sequence or a set of sequences (that is

an approximation of the generic we want) and a structure based on

measures (that describes the possible extensions of the base). Let p

be a condition.

• We extend p to a q′ that is somewhat universal for having an extension

in D, in the sense that if an extension of q′ is in D, then the weakest

extension of q′ of the same length is in D; this is done by shrinking the

“measure” part so to be compatible with all the possible extensions

in D.

• We extend q′ to a q so that, for each level, either all the conditions

that extend q are in D, or they are not in D.

• Finally there should be an extension of q in D, and this should give

enough information for the proof of the *-Prikry condition.

Gitik-Magidor long extender Prikry forcing was introduced by Gitik and

Magidor, and the reader can find an exhaustive description in [5], Section

3. The aim of the forcing is to add many Prikry sequences to a strong

enough cardinal λ, blowing up its power while not changing the power

function below it. So if the ground model satisfies GCH, then in the forcing

extension λ is singular and it is the first cardinal on which GCH fails. This

is more difficult than just having λ singular and 2λ > λ+: the proof for this

second statement usually consists in taking λ measurable, forcing 2λ > λ+

and then adding a Prikry sequence to λ. But Dana Scott [12] proved that if

λ is measurable and 2λ > λ+, then for a measure one set below λ, 2κ > κ+,

therefore this method would not give the first failure of GCH on λ. The

solution is to exploit the extender structure of the cardinal to add many

Prikry sequences, at the same time blowing up the power and changing the

cofinality.

The main limitation of this forcing is that it needs a long extender,

and more precisely an extender with length η bigger than λ+, because it

is a forcing that adds exactly η Prikry sequences to λ. The same forcing

will still work with short extenders, but it will not give any new result.
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Gitik defined a short extender version that has the same effect than the

long extender version (see [6]), but it is a hybrid Cohen-Prikry forcing, so

we do not feel it belongs to this initial analysis of *-Prikry condition for

Prikry forcings. It could be a future further development to check whether

also this hybrid forcing satisfies the *-Prikry condition or a generalization

of it.

Definition 2.1. Let κ and γ be cardinals. Then κ is γ-strong iff there

is a j : V ≺ M such that crt(j) = κ, γ < j(κ) and Vγ ⊆ M .

The definition below follows closely the treatment in [5], Section 3, and

we refer the reader to such paper for any undefined notion.

Suppose GCH, and let λ be a λ + 2-strong cardinal. By the theory of

the extenders, this means that there is an extender on λ of length λ++,

that is a system of ultrafilters defined in this way: for any α < λ++, define

a λ-complete normal ultrafilter on λ as X ∈ Uα iff α ∈ j(X). Note that

for α < λ this is trivial, and for α = λ this is the usual ultrafilter for

measurability.

These ultrafilters form a structure. Since we would like this paper to

be approachable even to readers not familiar with extenders, we are going

to describe this structure without proofs, as a black box. All the proofs are

in [5], Section 3. The forcing notion will be built on this structure.

For any α, β < λ++ , define α ≤E β iff α ≤ β and for some f ∈ λλ,

j(f)(β) = α. Then 〈λ++,≤E〉 has the following properties:

• It is a λ++-directed order.

• λ ≤E α for any α < λ++.

• We can define “projections” from different Uα’s: for any β ≤E α <

λ++ there are παβ : λ → λ such that if γ < β ≤ α < λ++, and

γ, β ≤E α, then {ν < λ : παβ(ν) > παγ(ν)} ∈ Uα.

• For any γ ≤E β ≤E α there is an A ∈ Uα so that for avery ν ∈ A,

παγ(ν) = πβγ(παβ(ν)).

• (Full commutativity at λ) For every α, β < λ++ and µ < λ, if α ≥E β

then παλ(µ) = πβλ(παβ(µ)).
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• (Independence of the choice of projection to λ): for every α, β < λ++

and µ < λ, παλ(µ) = πβλ(µ)
2.

For more readability, we write παλ just πα,0.

Because of the independence of the choice of projection to λ, for any

α, β < λ++ and any ν < λ, πα,0(ν) = πβ,0(ν). For any ν < λ and λ <

α < λ++, then, let us denote πα,0(ν) by ν0. By a ◦-increasing sequence

of ordinals we mean a sequence 〈ν0, . . . , νn〉 of ordinals below λ such that

ν00 < · · · < ν0n. We say that µ is permitted for 〈ν0, . . . , νn〉 iff 〈ν0, . . . , νn, µ〉
is ◦-increasing, i.e., µ0 > ν0i for all i = 0 . . . n. By the full commutativity

at λ, for any β ≤E α, µ is permitted for a sequence iff παβ(µ) is permitted

for the same sequence.

With some cosmetic change to the Uα’s, we can suppose that if A ∈ Uα,

µ0, µ1 ∈ A and µ0
0 < µ0

1, then |{µ ∈ A : µ0 = µ0
0}| < µ0

1 (see [5] the third

and fourth paragraph before Definition 3.6).

Definition 2.2. The forcing P consists of all p of the form

{〈γ, pγ〉 : γ ∈ g \ {max(g)}} ∪ {〈max(g), pmax(g), T 〉},

where

1. g ⊆ λ++ is of cardinality ≤ λ, has a maximal element according to

≤E and 0 ∈ g.

2. for γ ∈ g, pγ is a finite ◦-increasing sequence of ordinals < λ.

3. T is a tree, with trunk pmax(g), consisting of ◦-increasing sequences.

All the splittings in T are required to be on sets in Umax(g), i.e., for

every η ∈ T , if η ≥ pmax(g) then the set

SucT (η) = {µ < λ : η�〈µ〉 ∈ T} ∈ Umax(g).

Also require that for η1 ≥T η2 ≥T pmax(g), SucT (η1) ⊆ SucT (η2).

4. For every µ ∈ SucT (p
max(g)), |{γ ∈ g : µ is permitted for pγ}| ≤ µ0.

5. For every γ ∈ g, πmax(g),γ(max(pmax(g))) is not permitted for pγ .

2 There are also other properties satisfied by the structure 〈λ++, 〈Uα : α < λ++〉,≤E〉.
Gitik in [5] calls this structure a nice system. To prove the *-Prikry condition, such details

are not needed, but they are essential to prove the right consequences of the forcing.
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6. πmax(g),0 projects pmax(g) onto p0 (so pmax(g) and p0 are of the same

length).

Let us denote g by supp(p), max(g) by mc(p), T by T p, pmax(g) by pmc

and bas(p) = p � (supp(p) \mc(p)).

We can imagine a condition of P in this way:

T p

bas(p) supp(p) mc(p)

pmc

Clearly, the picture ignores many elements (especially the π’s), but

it is a good approximation. The idea is that for any γ < λ++, we are

building a generic for the tree Pikry forcing Pγ via Uγ . We can think of

(pγ , π′′
mc(p),γT

p) almost as an element of Pγ (it actually is if instead of all

T p we just project the elements in T p that are permitted for pγ). Therefore

the tree T p denotes all the possibile extensions for all the finite sequences

pγ , with γ in the support of p.

Definition 2.3. Let p, q ∈ P. We say that p extends q and denote this

by p ≤ q iff

1. supp(p) ⊇ supp(q).

2. For every γ ∈ supp(q), pγ is an end-extension of qγ .

3. pmc(q) ∈ T q.

4. For every γ ∈ supp(q),

pγ \ qγ = πmc(q),γ [(p
mc(q) \ qmc(q)) � (lh(pmc(q)) \ (i+ 1))],
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where i ∈ dom(pmc(q)) is the largest such that pmc(q)(i) is not permit-

ted for qγ .

5. πmc(p),mc(q) projects T
p
pmc� into T q

qmc� .

6. For every γ ∈ supp(q) and µ ∈ SucT p(pmc), if µ is permitted for pγ ,

then πmc(p),γ(µ) = πmc(q),γ(πmc(p),mc(q)(µ)).

It is something like this:

q p

Definition 2.4. Let p, q ∈ P. We say that p is a direct extension of q

and denote this by p ≤∗ q iff

1. p ≤ q

2. for every γ ∈ supp(q), pγ = qγ .

It is something like this:
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q p

Definition 2.5. Let p ∈ P and t ∈ T p
pmc� . Then p ⊕ t is defined as

follows:

1. supp(p⊕ t) = supp(p);

2. (p⊕ t)mc = pmc�t;

3. T p⊕t = {s ∈ T p : s ⊆ (p⊕ t)mc ∨ (p⊕ t)mc ⊆ s};

4. if γ ∈ supp(p),

(p⊕ t)γ = pγ�πmc(p),γ [t � (lh(t) \ (iγ + 1))],

where iγ is the largest such that t(i) is not permitted by pγ .

If s is a partial function from λ++ to the ◦-increasing finite sequences

in λ such that | dom(s)| < λ, α is an ordinal such that α ≥E γ for all

γ ∈ dom(s) and t is a finite ◦-increasing sequence of ordinals < λ, then

s � (α, t) is defined as follows:

1. dom(s � (α, t)) = dom(s);

2. if γ ∈ dom(s),

(s � (α, t))(γ) = s(γ)�πα,γ [t � (lh(t) \ (iγ + 1))],

where iγ is the largest such that t(i) is not permitted by s(γ).

Note that bas(p ⊕ t) = bas(p) � (mc(p), pmc�t). For this reason, for

every s as above and γ ∈ dom(s) we will write sγ instead of s(γ).



126 VINCENZO DIMONTE

Morally, p ⊕ t is the weakest extension of p that we can have choosing

t (and its projections) as extension: looking at Definition 2.3, we have

three basic ways to extend t: extending the support (so adding new finite

sequences, possibly shifting the maximum of the support), reducing T p,

or extending pmc. Any combination of these three ways will produce an

extension of p. If we use only the third way, then the “new” tree will have

pmc�t as a trunk, and will consist of all the s such that s ⊇ p�t and,

when possible, pmc�t will be projected to extend the finite sequences in the

condition.

p p⊕ t

t

Theorem 2.6 (Gitik, Magidor). Let P be as above and suppose that

GCH holds up to (and included) λ. Then

V P � 2λ = λ++ ∧ ∀κ < λ 2κ = κ+

Proposition 2.7. Let P be as above, and suppose that GCH holds up

to (and included) λ. Then P has the *-Prikry condition.

The rest of the paper is dedicated to prove Proposition 2.7.

The length measure for P will be l(p) = lh(pmc). So suppose that D is

a dense open subset of P and that p ∈ P. We need to prove that there are

n ∈ ω and q ≤∗ p such that for any r ≤ q with lh(rmc) = lh(qmc) + n, we

have that r ∈ D.

Without loss of generality, we can assume p = {〈0, 〈〉, TC〉} = 1P, where

TC is the complete tree of the increasing finite sequences in λ, as the same

construction will work for any p ∈ P. Note that in this case any q ∈ P with

qmc = 〈〉 is a direct extension of p.
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The proof goes through the same three steps as the proof for Lemma

1.7, but we are going to encounter a problem in the third step. Suppose we

manage to prove the first two steps, so that we find a q ≤∗ 1P such that if

there exist t and r ∈ D so that r ≤∗ q⊕ t, then q⊕ t ∈ D, and for any s1, s2
with the same length q ⊕ s1 ∈ D iff q ⊕ s2 ∈ D. By density there exists

r ∈ D so that r ≤ q, but it is not clear why there should exist a t such

that r ≤∗ q ⊕ t (this was immediate in the tree Prikry forcing), because

possibly mc(r) > mc(p). The solution is to fix an elementary submodel

N of H(ν) with ν sufficiently large to contain all the relevant information,

of cardinality λ+ and closed under λ-sequences of its elements. This can

be done since GCH holds up to λ. Then pick α < λ++ above all the

elements of N ∩ λ++. Now we are going to consider only conditions p with

bas(p), T p ∈ N and mc(p) = α, and we prove the first two steps only for

such conditions. Now, for this subset of conditions it is true that if r ≤ q

there is a t such that r ≤ q⊕ t, and since N is an elementary submodel this

will be enough to prove the third step for the whole forcing.

Let T be a tree such that {〈0, 〈〉〉} ∪ {〈α, 〈〉, T 〉} is in P, with T ∈ N .

Lemma 2.8 (First step). There exists r ∪ {〈α, 〈〉, S〉} ∈ P, with S ⊆
T and r, S ∈ N , such that for every t ∈ S, if for some q,R ∈ N , q ∪
{〈α, t, R〉} ≤∗ (r ∪ {〈α, 〈〉, S〉}) ⊕ t and q ∪ {〈α, t, R〉} ∈ D, then (r ∪
{〈α, 〈〉, S〉})⊕ t ∈ D.

So, if there exists an extension q of r∪{〈α, 〈〉, S〉} with bas(q), S ∈ N and

mc(q) = α that is in D, then also the weakest extension q′ of r∪{〈α, 〈〉, S〉}
with bas(q′) = bas(q), mc(q′) = α and q′mc = qmc is in D.

In other words, if there exists a condition like in the following picture

(where the thicker line is 1P):
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α

TS

r ∪ {〈α, 〈〉, S〉}

such that if there exists something like the dotted condition in D

α

t

TSR

r ∪ {〈α, 〈〉, S〉} q ∪ {〈α, t, R〉}

then the dash-dot condition is also in D:
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α

t

TSR

r ∪ {〈α, 〈〉, S〉} (r ∪ {〈α, 〈〉, S〉})⊕ t q ∪ {〈α, t, R〉}

Proof. If there is a r ∈ N and a T ′ ⊆ T with T ′ ∈ N such that

r ∪ {〈α, 〈〉, T ′〉} ∈ D, then this satisfies the Lemma.

If not, let A = SucT (〈〉). We shall define by recursion the sequences

〈rµ : µ ∈ A〉 and 〈Tµ : µ ∈ A〉, the first one increasing, such that rµ ∪
{〈α, 〈〉, Tµ〉} ∈ P, and Tµ are in N .

Let µ = min(A). If there are an s ∈ N and a T ′ ⊆ T in N with

trunk 〈µ〉 such that s ∪ {〈α, 〈µ〉, T ′〉} ∈ D, then set rµ = s and Tµ = T ′.

Otherwise do nothing, i.e., rµ = {〈0, 〈〉〉} and Tµ = T .

Suppose now that rξ and T ξ are defined for any ξ < µ in A. Let

r′′µ =
⋃

ξ∈µ∩A rξ and consider r′µ = r′′µ � (α, 〈µ〉). There are two cases:

1. If there are an s ∈ N and a T ′ ⊆ T such that

D � s ∪ {〈α, 〈µ〉, T ′〉} ≤∗ r′µ ∪ {〈α, 〈µ〉, T 〉},

then set rµ = r′′µ ∪ (s � (dom(s) \ dom(r′µ))) and Tµ = T ′.

2. Otherwise do nothing, i.e., rµ = r′′µ and Tµ = T .
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α

µ

r′′µ
r′µ s

α

rµ

Claim 2.9. For any γ ∈ dom(rµ) \ dom(r′′µ), µ is not permitted for

(rµ)
γ.

Proof of Claim. If γ ∈ dom(rµ) \ dom(r′′µ) then we must be in

the first case, so there was an s ∈ N and a T ′ ⊆ T as above such that

rµ = r′′µ ∪ (s � (dom(s) \ dom(r′µ))). Then γ ∈ dom(s) and sγ = (rµ)
γ .

But s ∪ {〈α, 〈µ〉, T ′〉} ∈ P, so by Definition 2.2(5) for any γ ∈ dom(s) ∪
{α}, παγ(max(〈µ〉)) = παγ(µ) is not permitted for sγ = (rµ)

γ . By the full

commutativity at λ the subclaim is proved. �

Let s1 =
⋃

µ∈A rµ. This will be the base of a condition in P. We want

now to define the tree of such condition, via the Tµ’s, so some S1 such that

s1 ∪ {〈α, 〈〉, S1〉} is an element of P.
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For i < λ let

Ci =

{
A if there is no µ ∈ A such that µ0 = i;⋂

µ∈A,µ0=i SucTµ(〈µ〉) otherwise.

Note that A ∈ Uα, and therefore we have that for any i ∈ λ, if there is

a µ1 ∈ A such that µ0
1 = i, for any µ2 ∈ A with µ0

2 > 9, |{µ ∈ A : µ0 =

i}| < µ2, so by λ-completeness Ci ∈ Uα. Set A∗ = A ∩ ∆∗
i<λCi = {ν ∈

A : ∀i < ν0 ν ∈ Ci} ∈ Uα. Then for every δ ∈ A∗ and for every µ ∈ A

if µ0 < δ0 then δ ∈ SucTµ(〈µ〉). S1 will be the tree obtained from T by

eliminating all the branches that do not start with µ ∈ A∗, replacing T〈µ〉
with Tµ

〈µ〉 and intersecting all the levels with A∗, i.e., 〈δ0, . . . , δn〉 ∈ S1 iff

〈δ0, . . . , δn〉 ∈ T δ0 and ∀i ≤ n, δi ∈ A∗.

Claim 2.10. s1 ∪ {α, 〈〉, S1} ∈ P.

Proof of Claim. According to definition 2.2, to prove the claim we

need s1 ∪ {α, 〈〉, S1} to satisfy 6 conditions. Conditions (5) and (6) are

trivial. Condition (1) holds because for any µ ∈ A, |rµ| ≤ λ, so s1 is the

countable union of sets of size ≤ λ, and therefore |s1| ≤ λ. Condition (2)

holds because rµ ∪ {〈α, 〈〉, Tµ〉 ∈ P. We have just seen that S1 satisfies

Condition (3).

So the only non-trivial point is to show condition (4) of the definition

of P, i.e., that for any δ ∈ SucS1(〈〉) = A∗,

|{γ ∈ dom(s1) : δ is permitted for (s1)
γ}| ≤ δ0.

Let

Bδ = {γ ∈ dom(s1) : δ is permitted for (s1)
γ}.

Since dom(s1) =
⋃

µ∈A dom(rµ), we can divide Bδ in

Bδ,µ = {γ ∈ dom(rµ) : δ is permitted for (s1)
γ = (rµ)

γ}

with µ ∈ A. We trace back the construction of s1. For any µ ∈ A, either

dom(rµ) = dom(r′′µ) =
⋃

ξ∈A∩µ dom(rξ) (case (2)) or there is an s such that

dom(rµ) =
⋃

ξ∈A∩µ dom(rξ) ∪ dom(s) (Case (1)). So Bδ =
⋃
{Bδ,µ : µ ∈

A, rµ �= r′′µ}.
By Subclaim 2.9 if µ is such that rµ �= r′′µ, then µ is not permitted for

(rµ)
γ for any γ ∈ dom(rµ)\

⋃
ξ∈A∩µ dom(rξ). Note that in the construction
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of s1 if µ′ > µ and γ ∈ dom(rµ), then (rµ)
γ = (rµ′)γ , therefore for any

γ ∈ dom(rµ), (s1)
γ = (rµ)

γ . So for any γ ∈ dom(rµ) \
⋃

ξ∈A∩µ dom(rξ), µ

is not permitted for (s1)
γ . So if δ0 < µ0, also δ is not permitted for (s1)

γ .

In other words, if δ0 < µ0 and δ ∈ Bδ,µ, it must be that there is a ξ < µ

such that δ ∈ Bδ,ξ. So we can write:

Bδ =
⋃

{Bδ,µ : µ ∈ A, rµ �= r′′µ, µ0 < δ0}.

But now, by the way we have chosen the Uα’s, if µ
0 < δ0 then |{ξ ∈ A :

ξ0 = µ0}| < δ0, therefore the former is a union of ≤ δ0 elements.

Now fix a Bδ,µ, with µ ∈ A, rµ �= r′′µ and µ0 < δ0. Since δ ∈ A∗,

δ ∈ SucTµ(〈µ〉) by definition of A∗ and the fact that µ0 < δ0. But rµ ∪
{〈α, 〈µ〉, Tµ} is a condition in P, therefore by point (4) of the definition of

P we have

|{γ ∈ dom(rµ) : δ is permitted for (rµ)
γ}| ≤ δ0.

So, finally, for any µ ∈ A, rµ �= r′′µ and µ0 < δ0, |Bδ,µ| ≤ |{γ ∈ dom(rµ) :

δ is permitted for (rµ)
γ}| ≤ δ0. Therefore Bδ is the union of ≤ δ0 sets of

cardinality less then δ0, so |Bδ| ≤ δ0. �

Claim 2.11. For every δ ∈ SucS1(〈〉), if for some q,R ∈ N ,

q ∪ {α, 〈δ〉, R} ≤∗ (s1 ∪ {α, 〈〉, S1})⊕ 〈δ〉

and q ∪ {α, 〈δ〉, R} ∈ D, then (s1 ∪ {α, 〈〉, S1})⊕ 〈δ〉 ∈ D.

Proof of Claim. Recall the construction of s1 at stage δ. We want

to prove that q ∪ {α, 〈δ〉, R} ≤∗ r′δ ∪ {〈α, 〈δ〉, T 〉}.
The only delicate point to prove is that for any γ ∈ dom(r′δ), q

γ = (r′δ)
γ ,

and we leave the rest of the (mostly trivial) details to the reader. By

definition, r′δ = r′′δ � (α, 〈δ〉), and s1 � dom(r′δ) = r′′δ . Since

q ∪ {α, 〈δ〉, R} ≤∗ (s1 ∪ {α, 〈〉, S1})⊕ 〈δ〉

it must be that for any γ ∈ dom(s1), so in particular for γ ∈ dom(r′δ),

qγ = ((s1 ∪ {α, 〈〉, S1})⊕ 〈δ〉)γ = (s1 � (α, 〈δ〉))γ .

But for γ ∈ dom(r′δ) this is (r
′′
δ � (α, 〈δ〉))γ = (r′δ)

γ .
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But then this implies that in the definition of rδ we are in Case (1), so

there exists a s such that

s ∪ {〈α, 〈δ〉, T δ〉} ≤∗ r′δ ∪ {〈α, 〈µ〉, T 〉}

and s ∪ {〈α, 〈δ〉, T δ〉} ∈ D, with

(s1)
γ = (rδ)

γ =

{
(rξ)

γ if there exists ξ ∈ δ ∩A, γ ∈ dom(rξ);

sγ otherwise.

for any γ ∈ dom(rδ) = dom(s). We want to prove now that

s1 ∪ {〈α, 〈〉, S1〉} ⊕ 〈δ〉 ≤∗ s ∪ {〈α, 〈δ〉, T δ〉}.

and by openness of D this suffices to prove the claim.

Since S1
〈δ〉 ⊆ T δ

〈δ〉, the only delicate point is again that for any γ ∈
dom(s) = dom(rδ), (s1 ∪ {〈α, 〈〉, S1〉} ⊕ 〈δ〉)γ = sγ .

If γ ∈ dom(rδ), then by definition of rδ either γ ∈ dom(r′δ) = dom(r′′δ ),

or γ ∈ dom(rδ) \ dom(r′′δ ). Suppose that γ ∈ dom(r′′δ ). Then there ex-

ist a ξ ∈ δ ∩ A such that γ ∈ dom(rξ), and (s1)
γ = (rξ)

γ . But then

(s1 � (α, 〈δ〉))γ = (rξ � (α, 〈δ〉))γ = (r′δ)
γ . Since s ∪ {〈α, 〈δ〉, T δ〉} ≤∗

r′δ ∪ {〈α, 〈µ〉, T 〉}, (r′δ)γ = sγ , as we wanted.

Suppose then that γ ∈ dom(rδ) \ dom(r′′δ). Then (s1)
γ = sγ , and since

by Claim 2.9 δ is not permitted for (s1)
γ , (s1 � (α, 〈δ〉))γ = (s1)

γ = sγ , as

we wanted. �

This was the first step, now we climb up the tree, by induction. We

want to define sn, S
n ∈ N by induction on n ∈ ω such that Sn ⊇ Sn+1,

sn ⊆ sn+1, sn ∪ {〈α, 〈〉, Sn} ∈ P and Sn+1 � lh(n) = Sn.

Suppose that sn, S
n are already defined. We define rt and T t for any

t ∈ Sn of length n+ 1, by induction on the lexicographical order �.

Let r′′t = sn ∪
⋃

s�t rt and r′t = r′′t � (α, t). There are two cases:

1. If there are an s ∈ N and a T ′ ⊆ Sn such that

D � s ∪ {〈α, t, T ′〉} ≤∗ r′t ∪ {〈α, 〈〉, Sn〉} ⊕ t,

then set rt = r′′t ∪ s � (dom(s) \ dom(r′t)) and T t = T ′.

2. Otherwise do nothing, i.e., rt = r′′t and T t = Sn.
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Claim 2.12. For any γ ∈ dom(rt) \ dom(r′′t ), t(n) is not permitted for

(rt)
γ.

Proof of claim. As before. �

Let sn+1 =
⋃

t∈Levn(Sn) rt. For i0 < · · · < in < λ let

Ci0,...,in =




{t(n) : t ∈ Levn(S
n)} if there is no t ∈ Levn(S

n)

such that

πα,0
′′t = (i0, . . . , in);⋂

t∈Levn(Sn),πα,0
′′t=(i0,...,in)

SucT t(t) otherwise.

Claim 2.13. For every m ∈ ω, i0 < · · · < im < λ,

|{t ∈ Levm(Sn) : πα,0
′′t = (i0, . . . , im)}| < λ.

Proof. We call

Ai0,...,im = {t ∈ Levm(Sn) : πα,0
′′t = (i0, . . . , im)}.

The proof is by induction on m ∈ ω. So fix i0 < λ. Then

Ai0 = {〈µ〉 : µ ∈ SucSn(〈〉), µ0 = i0},

and this has cardinality < λ since SucSn(〈〉) ∈ Uα and by our choice of Uα.

Now consider i0 < · · · < im+1 < λ. For any u ∈ Ai0,...,im , consider

E(u) = {µ ∈ SucSn(u), µ0 = im+1}. Then, again, |E(u)| < λ. But by

inductive hypothesis also |Ai0,...,im | < λ, so |Ai0,...,im+1 | = |{u�〈µ〉 : u ∈
Ai0,...,im , µ ∈ E(u)}| < λ. �

Because of the claim, then, Ci0,...,in ∈ Uα. Now define C∗
i0,...,in−1

=

�∗
i<λCi0,...,in−1,i. Then for any δ ∈ C∗

i0,...,in−1
, we have that if t ∈ Levn(S

n)

is such that for any j ≤ n − 1 we have t(j)0 = ij , and t(n)0 < δ0, then

δ ∈ SucT t(t).

Define then by induction C∗
i0,...,in−2

= �∗
i<λC

∗
i0,...,in−2,i

, C∗
i0,...,in−3

=

�∗
i<λC

∗
i0,...,in−3,i

, etc, until we have defined C∗ = �∗
i<λC

∗
i . Then, by defi-

nition, if δ ∈ C∗ and t ∈ Levn(S
n) is such that for any j ≤ n t(j)0 < δ0,

then δ ∈ SucT t(t).

Sn+1 will be the tree obtained from Sn by replacing Tt with T t
t and

intersecting all the levels with C∗, i.e., 〈δ0, . . . , δm〉 ∈ Sn+1 iff either m ≤ n

and 〈δ0, . . . , δm〉 ∈ Sn, or m > n and 〈δ0, . . . , δm〉 ∈ T δ0,...,δn , and moreover

∀i ≤ m, δi ∈ C∗.
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Claim 2.14. sn+1 ∪ {α, 〈〉, Sn+1} ∈ P.

Proof of Claim. The proof is similar to the previous one. In this

case, we split Bδ in the union of

{γ ∈ dom(sn) : δ is permitted for (sn+1)
γ = (sn)

γ}

and

Bt,δ = {γ ∈ dom(rt) : δ is permitted for (sn+1)
γ = (rt)

γ},

with t(n)0 < δ0, because of Claim 2.12.

We are going to prove, by induction on m ≤ n, that |{t ∈ Levm(Sn+1) :

t(m)0 < δ0}| ≤ δ0. Let

E(m) = {t ∈ Levm(Sn+1) : t(m)0 < δ0}.

For any i < δ0, since δ ∈ SucSn+1(〈〉), |{µ ∈ SucSn+1(〈〉) : µ0 = i}| < δ0.

Then

|E(0)| = |{µ ∈ SucSn+1(〈〉) : µ0 < δ0}| =

= |
⋃
i<δ0

{µ ∈ SucSn+1(〈〉) : µ0 = i}| ≤ δ0.

Fix now u ∈ E(m) and i < δ0. Since δ, by definition, is in SucSn+1(u) for

any u such that πα,0
′′u ⊆ δ0, we have that |{µ ∈ SucSn+1(u) : µ0 = i}| < δ0.

But then

|E(m+ 1)| = |{t ∈ Levm(Sn+1) : t(m)0 < δ0}| =

= |
⋃

u∈E(m)

⋃
i<δ0

{u�〈µ〉 : µ ∈ SucSn+1(u), µ0 = i}| ≤ δ0.

Then |{t ∈ Levn(S
n+1) : t(n)0 < δ0}| ≤ δ0, so there are only δ0-many

Bt,δ. The proof that |Bt,δ| < δ0 is the same as in claim 2.10, and so the

claim is proved. �

Claim 2.15. For every t ∈ Sn+1, if for some q,R ∈ N ,

q ∪ {α, t, R} ≤∗ (sn+1 ∪ {α, 〈〉, Sn+1})⊕ t

and q ∪ {α, t, R} ∈ D, then (sn+1 ∪ {α, 〈〉, Sn+1})⊕ t ∈ D.
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Proof of Claim. As before. �

Finally, let r =
⋃

n∈ω sn and S =
⋂

n∈ω Sn. It is in easy calculation

to show that r ∪ {〈α, 〈〉, S〉} ∈ P: for example, if δ ∈ SucS(〈〉), then δ ∈
SucSn(〈〉) for any n ∈ ω, therefore for any n ∈ ω

|{γ ∈ dom(sn) : δ is permitted for (sn)
γ}| ≤ δ0.

But then {γ ∈ dom(s) : δ is permitted for (s)γ} is the countable union

of sets of size ≤ δ0, and therefore it is itself of size ≤ δ0.

Then r ∪ {〈α, 〈〉, S〉} is the condition we wanted. �

Lemma 2.16 (Second step). There exists r∪{〈α, 〈〉, S∗〉}, with S∗ ⊆ S,

such that if t1, t2 ∈ S are of the same length, then (r∪{〈α, 〈〉, S∗〉})⊕t1 ∈ D

iff (r ∪ {〈α, 〈〉, S∗〉})⊕ t2 ∈ D.

Proof. The r will be the same of the first step, so we work only on the

tree S. The proof follows closely the proof of the second claim in Lemma

1.7, but it needs more care because now we require for η1 ≥T η2 ≥T pmc,

SucT (η1) ⊆ SucT (η2). Therefore every time we reduce a level, we reduce

also all the levels above, via an intersection. We are just going to prove the

first step, as the rest will be the same as in Lemma 1.7.

Let

R = {t ∈ S : r ∪ {〈α, 〈〉, S〉} ⊕ t ∈ D}.

Therefore we have to find S∗ ⊆ S such that for any t1, t2 ∈ S∗ fo the same

length, t1 ∈ R iff t2 ∈ R.

Let B0
〈〉 = {δ ∈ SucS(〈〉) : t ∈ R}. Then exactly one among B0

〈〉 and

SucS(〈〉)\B0
〈〉 are in Uα. Call such A0

〈〉. Then let 〈µ0, . . . , µl〉 ∈ S0 iff ∀i µi ∈
A0

〈〉. We are intersecting all the levels of S to A0
〈〉 so that for any η1 ≤S0 η2,

SucS0(η2) ⊆ SucS0(η1), and we are going to this this repeatedly without

further comment. Note that for all s ∈ S0, SucS0(s) = SucS(t) ∩ A0
〈〉, and

the sequences in S0 of length 1 are either all in R or all outside.

Now just follow the proof of Lemma 1.7, only Sn+1,0 is defined so that

〈µ0, . . . , µl〉 ∈ Sn+1,0 iff 〈µ0, . . . , µl〉 ∈ Sn and ∀i > n µi ∈ An+1
〈µ0,...,µn〉

(instead of just µn+1 ∈ An+1
〈µ0,...,µn〉), and the same change must be done in

the definition of Sn,m. We leave the details to the reader. �
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Lemma 2.17 (Third step). For any p ∈ P and any D dense set, there

exist q ≤∗ p and n ∈ ω such that for any t ∈ T q with lh(t) = n, q ⊕ t ∈ D.

Proof. We can suppose p = 1P. Like in Lemma 1.7, the first and

second steps show that there is a q = r ∪ {〈α, 〈〉, S〉} ∈ P such that if there

are s, t, R ∈ N such that s ∪ {〈α, y,R〉} ≤∗ q ⊕ t and s ∪ {〈α, y,R〉} ∈ D,

then for every u ∈ S of the same length of t, q ⊕ u ∈ D. This is our q.

q
S

α

We just need to prove that there are s, t, R ∈ N such that

s ∪ {〈α, t, R〉} ≤∗ (r ∪ {〈α, 〈〉, S〉})⊕ t = q ⊕ t

and s∪{〈α, t, R〉} ∈ D, and then by definition of q the lemma is proved.

Pick some β ∈ N ∩ λ++ which is ≤E above every element of dom(r).

This is possible since dom(r) ∈ N . Note that β ≤E α by the choice of α.

Claim 2.18. There exists S∗ ⊆ S such that for every µ ∈ SucS∗(〈〉)
and γ ∈ dom(r), if µ is permitted for rγ, then πα,γ(µ) = πβ,γ(πα,β(µ)).

Proof of claim. For any µ ∈ SucS(〈〉), let

Bµ = {γ ∈ dom(r) : µ is permitted for rγ}.

Then we have |Bµ| ≤ µ0. Let 〈ξi : i < λ〉 be an enumeration of dom(r)

such that for any µ ∈ SucS(〈〉), Bµ ⊆ {ξi : i < µ0}. For any i < λ, let

Ci = {µ ∈ SucS(〈〉) : πα,ξi(µ) = πβ,ξi(πα,β(µ))}.

Let A∗ = ∆∗
i<λCi and let S∗ be the intersection of S with A∗. Then if

µ ∈ SucS∗(〈〉), µ ∈ A∗, so for all i < µ0 παξi(µ) = πβξi(παβ(µ)). But if µ
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is permitted for rγ , then γ ∈ Bµ, so there should exist an i < µ0 such that

γ = ξi, so παγ(µ) = πβγ(παβ(µ)). �

Let S∗∗ be the projection of S∗ to β via πα,β . Let r
∗ = r∪{〈β, 〈〉, S∗∗〉}.

q
S

α

S∗∗

β

S∗

r∗

Claim 2.19. r∗ ∈ P.

Proof of claim. Again, the crux of the matter is to prove that for

any δ ∈ SucS∗∗(〈〉),

|{γ ∈ dom(r) : δ is permitted for rγ}| < δ0.

But if δ ∈ SucS∗∗(〈〉), then there exists µ ∈ SucS∗(〈〉) such that παβ(µ) =

δ. But then by full commutativity µ0 = δ0, and since r ∪ {〈α, 〈〉, S) ∈ P}
and S∗ ⊆ S the claim is proved. �

Then r∗ ∈ N ∩ P, and since N is an elementary submodel there exists

s ∈ N ∩ P, s ≤ r∗ and s ∈ D.
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q
S

α

S∗∗

β

S∗

r∗ s

By definition of extension, sβ ∈ S∗∗, therefore there exists a t ∈ S∗

such that πα,β
′′t = sβ . Note also that mc(s) <E α by the choice of α. Let

R be the tree with trunk t, derived intersecting S∗
t with (π−1

α,mc(s))
′′T s and

shrinking, if necessary, in order to insure the equality of projections πα,γ
and πmc(s),γ ◦ πα,mc(s) for the relevant γ’s in dom(s), as in claim 2.18.

q
S

α

S∗∗

β

S∗

r∗ s

t

R

Then bas(s) ∪ {〈mc(s), smc〉} ∪ {〈α, t, R〉} ≤ s, therefore it is in D.

Claim 2.20.

u = bas(s) ∪ {〈mc(s), smc〉} ∪ {〈α, t, R〉} ≤∗ (r ∪ {〈α, 〈〉, S〉})⊕ t,



140 VINCENZO DIMONTE

t

αr ∪ {〈α, 〈〉, S〉})⊕ t

t

α

R

bas(s) ∪ {〈mc(s), smc〉} ∪ {〈α, t, R〉}

Proof of claim. Once again, we just prove that uγ = (r � (α, t))γ for

any γ ∈ dom(r), and we leave the rest to the reader.

First of all, uγ is sγ for any γ ∈ supp(s). Since s ≤ r∗, for any γ ∈
supp(r∗), sγ = (r∗)γ�πβγ

′′sβ � (lh(sβ) \ (i+ 1)), where i is the largest such

that sβ(i) is not permitted for (r∗)γ .

On the other hand, for any γ ∈ dom(r) (r � (α, t))γ = rγ�παγ
′′t �

(lh(t) \ (j + 1)), where j is the largest such that t(j) is not permitted for

(r)γ .

Note that dom(r) = supp(r∗)\{α}, and for any γ ∈ dom(r), rγ = (r∗)γ .

But now remember that παβ
′′t = sβ , t ∈ S∗ and by claim 2.18 παγ(µ) =

πβγ(παβ(µ)) for µ ∈
⋃

S∗ and µ permitted for rγ . Therefore

πβγ
′′sβ � (lh(sβ) \ (i+ 1)) = παγ

′′t � (lh(t) \ (j + 1)),

and the claim is proved. �
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But then by the way we have chosen q we have that for every v ∈ S of

the same length of t, q ⊕ v ∈ D, and the lemma is proved. �

Finally, we can prove the *-Prikry condition for P. Let q and n as in

the last lemma. Let r ≤ q such that l(r) = l(q) + n. Let t = πmc(r)α
′′rmc.

Since r ≤ q, for any γ ∈ supp(q), rγ is qγ extended by the projection via

παγ of rα, that by definition is the projection via πmc(r)α of rmc, that is t.

But then rγ = (q ⊕ t)γ , so r ≤∗ q ⊕ t, that is in D, so also r ∈ D.

In conclusion, *-Prikry condition is a topological property of forcing

notions alternative to the Prikry condition, that seems to hold for many

Prikry forcings, as the one above. Conditions in a Prikry forcing have

two parts: a “sequence” part, usually a finite sequence or a set of finite

sequences, that is an approximation of the generic we want, and a “future

extension” part, usually a set of measure one or a tree, that establishes

all the possible extensions of the “sequence” part. Therefore a way to

prove the *-Prikry condition is to follow three steps: first trim the “future

extension” part of the forcing (usually a set of measure one or a tree) so

that if an extension of a certain length is in D, then all the extensions with

the same “sequence” part of the first one are in D; then trim again so that

all the extensions of the same length are either all in D or all not in D,

and then argue in some way that there should be a condition that satisfy

the Prikry sequence (this is immediate in simple forcings, but can be more

complicated).
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9 (1961), 521–524.

[13] S. Shelah, On nice equivalence relations on λ2, Archive for Mathematical Logic 43

(2004), 31–64.

[14] X. Shi, Axiom I0 and higher degree theory, The Journal of Symbolic Logic 80 (2015),

970–1021.

[15] X. Shi and N. Trang, I0 and combinatorics at λ+, Archive for Mathematical Logic

56 (2017), 131–154.

Technische Universität Wien

Wiedner Hauptstraße 8–10, 1040 Wien, Austria

Current address: Università degli Studi di Udine

Dipartimento di Scienze Matematiche, Informatiche e Fisiche

Via delle Scienze, 206, 33100 Udine, Italy

vincenzo.dimonte@gmail.com


