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resorowania fotela 

Abstract
An optimal way to select parameters of a driver’s seat of a special vehicle, which contributes directly to an 
increase in driving comfort is presented in the work. A mathematical model of the vehicle was formulated by 
using of joint coordinates and homogenous transformations. A maneuver of driving over obstacles in a form 
of a speed bump of different heights and lengths is presented. A subject of the investigations was to select 
such damping parameters and driver’s seat stiffness to minimize amplitudes of vibrations present in this sub-
assembly. An influence of a form of an objective function and a selection of decisive variables on quality of 
the optimization results obtained was analyzed. 
Keywords: active suspension, drive comfort, dynamic optimization, computer modeling

Streszczenie
W pracy przedstawiono sposób doboru optymalnych parametrów fotela kierowcy pojazdu specjalnego, który 
bezpośrednio przyczynia się do zwiększenia komfortu jazdy. Model matematyczny pojazdu sformułowano 
korzystając ze współrzędnych złączowych i przekształceń jednorodnych. Przedstawiono manewr przejazdu 
przez przeszkody w postaci progów zwalniających o różnej wysokości i długości. Przedmiotem badań było 
dobranie takich parametrów tłumienia i sztywności fotela kierowcy, aby zminimalizować amplitudy drgań 
występujące w tym podzespole. W pracy skoncentrowano się na analizie wpływu postaci funkcji celu oraz 
doboru zmiennych decyzyjnych na jakość uzyskanych wyników optymalizacyjnych.
Słowa kluczowe: aktywne zawieszenie, komfort jazdy, optymalizacja dynamiczna, modelowanie komputerowe
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1.  1. Introduction

Driving comfort of a driver and passengers in the motor vehicles is a subject of considerations 
of many scientific and research papers [1, 2, 3, 4]. A comfort improvement can have a significant 
influence on both effective time of vehicle use and a level of operator tiredness. It is particularly 
important in the case of articulated and special vehicles in which an operator spends daily on 
average from a few to over a dozen hours [2]. A lot of research deals with human-seat interaction 
[5, 6, 7]. In these works authors focus on accurate modelling of human body with seat contact. 
The presented research deals with truck drivers considering travel time factor and designing best 
possible alternatives of driver’s seat shape. In order to this objective they used the aid of ergonomics 
and advanced design tools like CAD CAE and FEM (ABAQUS). As it is shown in [8, 9, 10] the 
comfort improvement of a driver and passengers is frequently identified with modifications of 
vehicle sub-assemblies. In this case researchers do not include the human body interaction but they 
are focused on changes and improvements in the vehicle elements such as suspension, and those 
systems are commonly called an active or semi-active suspension [1, 9, 10]. In the paper [11] the 
optimization of damping in the passive suspension system of a vehicle moving on a road with rough 
surface of random irregularities, described according to the ISO classification has been presented. 
The optimum suspension damping coefficient was determined. Seats, and in particular a driver’s 
seat, are a next sub-assembly which has a direct influence on the driving comfort [12]. In this case a 
reduction of the vibrations occurring while driving over the uneven road surfaces can turn out to be 
an important factor affecting the driving comfort improvement [13]. An influence of uneven road 
surfaces on the driver seat behavior is presented as an example in paper [14]. The authors used a 
magneto-rheological shock absorber to improve driving comfort. Regulators and actuators which 
must be calibrated properly, are usually used to select optimum parameters of the sub-assemblies 
[1, 9, 10]. The selection of the appropriate parameters of the vehicle sub-assemblies can be also 
made by solving an optimization task. So far these methods have been used, among other things, in 
papers [15, 16] to solve tasks in a scope of controlling the systems supporting a driver in dangerous 
road situations. The authors used methods of a different degree of numerical complexity to select 
braking torques acting on a particular wheel of the vehicle. Optimization performed in this scope 
aimed at calibrating and testing the existing systems. During the optimization a functional defined 
in a form of the integral criterion was minimized. In order to solve an issue how to select proper 
values of the driver’s seat sub-assembly parameters, different methods of dynamic optimization 
were used in paper [17] and analyses were made related to a selection of the functional used in 
the optimization task. An objective function and its influence on the final values of the dynamic 
optimization task obtained and time of the simulation calculations were analyzed. 

In this article different objective function forms and decisive variable variants were 
subjected to an analysis and their influence on the results obtained in the optimization 
process was investigated. The investigations concerned an improvement of comfort of driving 
by a special vehicle for the assumed road maneuver with obstacles in a form of speed bumps. 
A special models of road surface and own authors algorithms to determine position of contact 
point of tire with road surface where acting reaction forces have been used [18, 19]. To obtain 
these reactions tire model Fiala was used [20]. 
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It is worth to emphasising that in [21, 22, 23] the similar analysis using evaluation 
algorithms have been performed. However, the road unevenness was modelled as sinusoidal 
function and mathematical models of vehicles have reduced the numerical complexity. 

2.  Mathematical model

An object of testing is a rescue fire-fighting vehicle being an example of a vehicle with a high 
gravity center. In the analyzed vehicle there were twelve sub-assemblies identified such as: a frame, 
a cabin, a driver’s seat, a body, an engine, a front and rear axle, stub axles and wheels (Fig. 1). 

Joint coordinates and homogenous transformations were used to determine a position and 
orientation of these bodies in the three-dimensional space [15, 17, 24]. At such a way of modeling 
motion of each body (except for the base body), is determined in relation to a preceding body, 
and this motion is described by the generalized coordinates assumed appropriately. For the 
frame model (Fig. 2), the vector of the generalized coordinates has the following form:

	       q 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )=  x y z
T

ψ θ ϕ 	 (1)

Fig. 1.	 Parts of the vehicle
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Fig. 2.	 A model of the vehicle frame
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The cabin (Fig. 3) is mounted to the frame and in relation to it the cabin has one degree 
of freedom (a rotation):

	 q 2 2( ) ( )=  θ 	 (2)

The model of driver’s seat is presented in Fig. 4.

It has one degree of freedom and is connected with the cabin by a spring and a damper:

	  q 3 3( ) ( )=  z 	 (3)

The seat surface amortization and contact between a driver and a seat have been simplified. 
The influence of these phenomenon has been taken into account in cz

(3) and dz
(3) coefficients. 

Models of the front and rear axles are presented in Fig. 5. Each of the axles in relation to the 
frame has three degrees of freedom – two displacements and one rotation. The displacements 
are determined by generalized coordinates  y z4 4( ) ( ),  (in the case of the front axle)  y z5 5( ) ( ),  
(in the case of the rear axle), whereas the rotations – coordinate θ 4( )  (in the case of the front 
axle), θ 5( )  (in the case of the rear axle), respectively. A role of suspension springs is played by 
elastic elements mounted between the determined points. Operating of torque control rods 
is modeled by the elastic elements of deformation directions compatible with generalized 

Fig. 3.	 The cabin model

Fig. 4.	 The driver’s seat model for controlling: a) damping, b) stiffness, c) damping and stiffness 
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coordinates θ 4( )  and  θ 5( ) . The suspension springs of the vehicle are characterized by lateral 
flexibility, therefore translating elastic elements acting in the direction consistent with 
generalized coordinates y 4( ) and y 5( )  were implemented into the mathematical model. 

Vectors of the generalized coordinates of the axles are as follows:

	    q 4 4 4 4( ) ( ) ( ) ( )=  y z
T

θ 	 (4)

	    q 5 5 5 5( ) ( ) ( ) ( )=  y z
T

θ 	 (5)

The stub axles in relation to the front axle can make a rotation (Fig. 6), and their vectors of 
the generalized coordinate take a form of:

	  q 6 6( ) ( )=  ψ 	 (6)

	  q 7 7( ) ( )=  ψ 	 (7)

Fig. 5.	 Models of the axles

Fig. 6.	 Models of the stub axles 
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The front wheels (mounted to the stub axles) and the rear wheels (mounted to the axle) 
have one degree of freedom in relation to the preceding bodies – a rotation. Models of the 
wheels (bodies no 8, 9, 10, 11) are presented in Fig. 7.

Their vectors of the generalized coordinates are as follows:

	  q k k( ) ( )=  θ 	 (8)

Fig. 7.	 A model of the wheel 

Fig. 8.	 Models of the sub-assemblies forming the tree structure of the considered multibody system 
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Force F k( ) and moment M k( ) of a couple of forces, constituting a reaction of a road surface, 
and driving torque moment k

y
{ } M  located in the axis of rotation of the rear wheels act on the 

particular wheel k. Components of forces F k( ) and moment M k( ), were determined by the Fiala 
tire model [18, 20]. These components are applied to the  contact point, specified in paper 
[18], of the tire model with the road surface. The road is discretized, and both the detailed 
algorithms for modeling surface unevenness and the algorithms which enable to determine a 
position of contact point C in the reference system {} are presented in [18]. Driving torque 
moments k

y
{ } M  act on the rear wheel of the vehicle (k=10,11) according to a principle of 

the open symmetrical differential mechanism. Appropriate driving torques controlled by a 
PID regulator are provided to the vehicle wheels in order to ensure the desired speed of the 
vehicle. The last sub-assemblies of the vehicle are the engine and the body. They are modeled 
as bodies connected rigidly with the frame, therefore they do not have relative generalized 
coordinates. The multibody system can be presented as a tree structure which contains the 
open kinematic chains (Fig. 8). Nodes of this tree are bodies modeling a specifying sub-
assemblies.

Equations of vehicle motion have been formulated using Lagrange equations of the 
second kind [15, 18]:

	 d
dt

E
q

E
q

V
q

V
q

Q
k k k

D

k
k

∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

=
 

	 (9)

where:

E E
p

p

N
=

( )

=∑ 1
 – total kinetic energy of the vehicle,

E p( )  – kinetic energy of the –th body,

V V
p

p

N
=

( )

=∑ 1
 – total potential energy of the vehicle,

V p( )  – potential energy of the –th body,

V VD Dp

N p

=
( )

=∑ 1
 – total energy dissipation function of the vehicle,

VD
p( )  – energy dissipation function of the –th body,

& &
K

q
dq
dt

qk k n
= = ( ) =1, ,

 – vector of generalized velocities of the system,

Q Q k k n
= ( ) =1, ,

 – vector of generalized forces of the system,

N – number of bodies of the vehicle,
n – number of generalized coordinates of the vehicle,
k n=1, , .
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Using transformations described in [15, 18, 24] the components of kinetic energy of p-th 
body can be formulated as:

	 d
dt

E
q

E
q

tr
p

i
p

p

i
p i

p p p T∂
∂

−
∂
∂

= { }
( )

( )

( )

( )
( ) ( ) ( )


B H B 	 (10)

where:
B p( )  – transformation matrix of the –th body in relation to inertial system,
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– pseudo inertia matrix defined in the local coordinate system of -th body,
m – mass of the -th body,
  x y z, ,  – coordinates of  location described in local coordinate system of the -th body,
tr M{ }  – trace of the matrix M.

After transformations dynamic equations of motion of the –th sub–system of the vehicle 
can be written in the general form:

	 A q q f q qi i it t( ) ( ) ( )( ) = ( ), , ,  	 (11)
where:
A i( )  – mass matrix,
f i( )  – vector of external, Coriolis, centrifugal and gravity forces.

Therefore equations of motion of the particular sub–system of the vehicle can be described 
as follow:

▶▶ sub–system 1 (frame – F, front axle – AF, stub axle – SA, front wheels – WF)
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▶▶ sub-system 2 (frame – F, rear axle – AR, rear wheel – WR)
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▶▶ sub-system 3 (frame – F, cabin – C, driver seat – S)
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For the vehicle model described in such a way an equation of motion was formulated by 
using of formalism of Lagrange equations of II order. In papers [15, 18] there is a detailed 
description of mathematical modelling which results in a calculation model and dynamic 
equations of motion in a matrix form written as: 

	
Φ q w
Aq- Φ r = f

T &&

&&

={ 	 (12)

where:	

A

A A A A A A A A

=

+ +F F F F F F F AF F SA F WF F AR, , , , , , ,
1 2 3 1 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )
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, , , ,

2 3 3

1 1 1 1

( ) ( ) ( )

( ) ( ) ( ) ( )

A A

A A A A 0 00 0 0

A A A A 0 0 0 0
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– mass matrix,

q q q q q q q q q =        1 4       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) SA WF WR
1 1 5 2 2 3

 
T  

– vector of generalized coordinates of the system,
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Φ =










0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1
1 0

T

 – constraints matrix,

f f f f f f f f f = + +      F F F AF SA WF AR WR
1 2 3 1 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )    f fC S

T3 3( ) ( )   – vector of external, Coriolis and centrifugal 
forces,

r   = r  r1 2[ ]T – vector of unknown constraint reactions corresponding to torques acting on stub 
axles connected with the wheels,

w  =  δ δ1 2( ) ( ) 
T – vector of right sides of constraint equations,

δ i( )  – steering angle of the –th front stub axle of the vehicle.

The details of the procedure which lead to form equation (12) with description of 
elements in matrix A and vector f are presented in [18].

3.  Optimisation problem

The main aim of optimization is to select such vehicle parameters which provide the 
best possible driving comfort. In the issue in question the decisive variables determine the 
parameters of the driver’s seat sub-assembly in the discrete time moments:

	 d  =  d dn

T

d1  	 (13)

where nd is a number of the discrete timestamps. Spline functions of the first degree were used 
to obtain a continuous function of the decisive variables. Additionally, inequality constraints 
determining the minimum and maximum values of the parameters were considered:

	 d d dimin max≤ ≤ 	 (14)

These constraints were taken into account in the optimization task by the external penalty 
function [25, 26], of which value was added to the objective function minimized:

	 ζ i C e g
g

i
C igi i

id d
d( ) ( ) >
( ) ≤

( ){ = for   0 
for   0  d

1
2

0

,
, 	 (15)

where:
g i d( ) ≤  0  dla i ng=1,   ,   – the inequality constraint defined on basis of (13),
ng  – a number of the inequality constraints,
C Ci i1 2, ,,  – weights selected empirically.
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In the optimization process there were separate analyses made in which the following 
functionals were minimized:

▶▶ values of the relative extrema of the driver seat acceleration

	 Ω1
3 2

11
d q d,  = && %&&( ) ( )( ) + ( )→( )

== ∑∑C z tex i ii

n

i

n ge

, minζ 	 (16)

▶▶ Root Mean Quad (RMQ) of the driver seat acceleration

	 Ω2
3 4

0
4

1
d q d,  =   && %&&( ) ( )  + ( )→( )

=∫ ∑C
t

z t dt
e

t

ii

ne g ζ min 	 (17)

where: 
ne  – a number of the dominant extrema analyzed in the time course of acceleration of the %&&z 3( ) ,
tex i,  – time moment of -th extrema of z 3( ) ,
te  – simulation duration,
C – weight selected empirically.

Three cases in which the following parameters were subjected to controlling in the driver 
seat sub–assembly were examined:

▶▶ damping
	 d1 1

1 1 1
1 =     d d di n

T

d

( ) ( ) ( )
( )





  	 (18)

where:
di– a value of driver’s seat damping in the discrete time moment ti,
nd

1( ) – a number of discrete timestamps,

▶▶ stiffness
	 d2 1

2 2 2
2 =     c c ci n

T

d

( ) ( ) ( )
( )





  	 (19)

where: 
ci – a value of stiffness of the driver seat spring in the discrete time moment ti,
nd

2( )  – a number of discrete timestamps,

▶▶ damping and stiffness 

	 d
d
d3

1

2

 = 








 	 (20)

Vector d3 contains two vectors (damping and stiffness of the driver seat), and its size is 
n n nd d d

3 1 2( ) ( ) ( )= + .

The problem formulated in such a way was solved by Hooke-Jeeves method [25]. The 
results of the numerical simulations performed for the selected road case and a comparison of 
the results obtained while conducting the numerical simulations for a few different forms of 
the objective function and the decisive variables are presented further in the article.
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4.  Results of numerical calculations

A case in which a vehicle driving at a constant speed drives over an obstacle in a form of 
speed bumps of 6 cm height (a smooth bump, Fig. 9a) and 10 cm (a sharp bump , Fig. 9b).

An object of the investigations was to determine the optimal coefficients providing a 
reduction of the driver’s seat vibrations while performing the maneuver. In the numerical 
simulations it has been assumed that the maneuver lasted 3 sec. in which the vehicle drove over 
the obstacle with the front and rear wheels. The constant speed equal to 10 km/h provided by 
controlling the driving torque moments and use of a PID regulator [18], was assumed. In the 
numerical simulations a uniform and non-uniform division of the time interval was tested by 
increasing a number of points while driving over the obstacle. Finally, it was assumed that the 
vector of the time moment values can be presented in the form of:

	 t  = ti i nd
( ) =1, ,

	 (21)

where:

t ii
te
nd

 = ,

nd  = 15  – a number of discrete timestamps,
t se  = 3[ ]  – simulation time.

m06,0h =

m25,2r =

m25,2r =
a)

m75,0r =

m1,0h =b)

Fig. 9.	 The profiles of the speed bumps analyzed
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The physical parameters of the vehicle necessary to perform the simulation were 
taken from paper [18]. The driver model was accounted in the calculations and dynamic 
equations of motion as additional mass of 80 kg weight joined with the seat. The constant 
step Runge-Kutta method of 4-th order [25] was used to integrate equations of motion 
in each optimization step. The minimal and maximal values of the damping and stiffness 
coefficients being inequality constraints were taken  dz ,min

3( ) =10 Ns/m and dz ,max
3( ) = 4000 Ns/m,  

cz ,min
3( ) =1.104 N/m, cz ,max

3( ) =15.104 N/m, respectively. Fig. 10 presents the results of courses 
of the decisive variable values for selected solution obtained in the dynamic optimization 
process where functional (17) and 10 km/h vehicle velocity were assumed. 

Significant differences in the decisive variable courses obtained can be noticed in both cases. 
The courses obtained for the speed bump of 10 cm height are characterized by higher amplitudes, 
many a time achieving the upper optimization limit. In spite of differences in the values and the 
decisive variable courses the subsequent figures show that their usage in the sub-assembly of an 
active suspension of the seat driver yields desirable effects. Courses of the driver seat acceleration 
for the different minimized functionals and the decisive variables are presented in Figs 11–13.

Fig. 10.	 Courses of the stiffness decisive variables (1), damping (2), stiffness and damping (3) the 
driver seat obtained in the optimization process for the smooth (a) and sharp (b) bump 

Fig. 11.	 Courses of the driver’s seat acceleration of the damping optimization for  
the smooth (a) and (b) sharp bump 
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Fig. 12.	 Courses of the driver’s seat acceleration of the spring stiffness optimization for  
the smooth (a) and sharp (b) bump

Fig. 13.	 Courses of the driver’s seat acceleration of the damping and spring stiffness optimization for the 
smooth (a) and sharp (b) bump

Fig. 14.	 The courses of the driver seat acceleration for the optimized functional Ώ1 
and the decisive variables for the smooth (a) and sharp (b) bump
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While analyzing the diagram above it can be noticed that both criteria used to evaluate 
the objective function value seem to be appropriate in the case analyzed. The Root Mean 
Quad criterion is slightly better than the criterion examining the relative extrema of the driver 
seat acceleration. Additionally, the lowest values of the acceleration after the optimization 
were obtained when both stiffness and driver’s seat damping were taken into account in the 
decisive variable vector. A cumulative list of the courses of the driver seat acceleration for the 
minimized functional is presented in Figs 14 and 15. 

Two indicators were implemented to compare quantitatively the results obtained in the 
optimization process. The first of them is used to unify a measure of the objective function 
forms used:

	 Ωref j
e

t

ex ii

n

t
z t dt z te ed( ) ( )  + ( )( ) ( )

=∫ ∑ = 
1 3

0

2
3

1
%&& %&& , 	 (22)

The second indicator which determines a percentage improvement of the driver seat 
acceleration obtained in the optimization process is described according to the formulae:

	
d

di j
re� ef

i o
j

ref
i o

j

( ) − ( )
( ) ⋅
( )

( )
 = 
Ω Ω

Ω

,

,
%100∆ 	 (23)

where:
Ωref

s( )  – the reference value (before the optimization), assuming constant spring stiffness as 
90000 N/m and damping 1500 Ns/m,

Ωref
i o

j
,( ) ( )d  – value of -th objective function after optimization taking -th vector of the decisive 
variables into account, , .

Fig. 15.	 The courses of the driver seat acceleration for the optimized functional Ώ2 
and the decisive variables for the smooth (a) and sharp (b) bump
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The values obtained in the optimization process for the different objective functions and 
the decisive variables are presented in Tables 1 and 2.

Table 1.	 Values of the objective function and the improvement coefficient obtained from solving the dynamic 
optimization task for the smooth bump 

Objective 
function

Values of the 
objective 

function without 
optimization

Ωref
s( )

 

Values of the 
objective 

function after 
optimization 

Ωref
i o

j
,( ) ( )d

Value of 
improvement 

coefficient

i j( )∆  [%]

Mean value of 
improvement 

coefficient 
[%]

Ώ1(d1)

13.94

6.88 50.65

57.25Ώ1(d2) 5.86 57.96

Ώ1(d3) 5.14 63.13

Ώ2(d1) 6.50 53.37

61.45Ώ2(d2) 4.96 64.42

Ώ2(d3) 4.66 66.57

Table 2.	 Values of the objective function and the improvement coefficient obtained from solving the dynamic 
optimization task for the sharp bump 

Objective 
function

Values of the 
objective 

function without 
optimization

Ωref
s( ) (dj)

Values of the 
objective 

function after 
optimization

Ωref
i o

j
,( ) ( )d

Value of 
improvement 

coefficient

i j( )∆
 
[%]

Mean value of 
improvement 

coefficient
 [%]

Ώ1(d1)

153.97

71.10 53.82

67.76Ώ1(d2) 41.19 73.25

Ώ1(d3) 36.22 76.22

Ώ2(d1) 74.18 51.82

69.65Ώ2(d2) 41.35 73.14

Ώ2(d3) 24.63 84.00

The tabular results confirm an advantage of the Root Mean Quad criterion over the 
criterion examining the relative extrema of the driver seat acceleration. However, in each case 
analyzed the improvement coefficient value is greater than 50%. The greatest improvement 
for the sharp bump, over 80%, can be noticed for the RMQ criterion with use of the vector of 
the decisive variables containing stiffness and damping of the driver’s seat. The mean value of 
the improvement coefficient confirms the hypothesis that with an increase in the acceleration 
caused by road unevenness the procedure algorithm presented can improve significantly 
driving comfort of a special vehicle driver.
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5.  Conclusions

The article presents a solution to the problem of selecting the parameters of active 
damping and stiffness of the driver seat by the dynamic optimization, by integrating an 
equation of motion of the special vehicle in each iteration. The calculations were made for the 
selected road maneuver with the obstacle in a form of the speed bumps of different height. 
Two selected objective functions and three variants of the decisive variables were analyzed. 
The obtained results indicate that a proper selection of both the objective function and 
the elements subjected to control (stiffness or damping) is very important. The numerical 
analyses also indicate that with an increase in the acceleration caused by road unevenness, the 
dynamical optimization conducted properly can improve significantly driving comfort of a 
driver. An average improvement of about 58% was obtained for driving over the smooth bump 
and about 68% for driving over the sharp bump. It should be emphasized that the performed 
studies deal with one road maneuver for two shapes of the speed bumps. However, authors 
conducted a number of other simulations taking into account the different types of road 
unevenness and velocity. In this article two unevenness road as an example of effective way 
of cushioning the driver’s seat to determine the stiffness and damping coefficients have been 
presented. The Hooke-Jeeves method characterized by a great numerical convergence and 
relatively low sensitivity to a start point was used in the calculations. The presented procedure 
algorithm is universal and can be applied in other vehicle sub-assemblies and multibody 
systems. In this article presented algorithm improves significantly driving comfort of a special 
vehicle driver, although due to long time of calculations it can be used only to verify the 
existing controllers operating in the real time. In subsequent works the authors plan to use an 
artificial neuron network. After appropriate training the neuron network can be implemented 
in the controller of the active driver seat damping system to select the optimum parameters in 
the real time. For this purpose a number of maneuvers and shapes of road unevenness should 
be increased to collect data for an artificial neuron networks training set.
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