
S C H E D A E I N F O R M A T I C A E

VOLUME 20 (2011) DOI 10.4467/20838476SI.11.002.0288

Oversegmentation Methods for Character Segmentation in
Off-Line Cursive Handwritten Word Recognition – An

Overview

Magdalena Brodowska

Faculty of Physics, Astronomy and Applied Computer Science,
Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

e-mail: m.dudek@uj.edu.pl

Abstract. Character segmentation (i.e. splitting the images of handwritten

words into pieces corresponding to single letters) is one of the required steps

in numerous off-line cursive handwritten word recognition solutions. It is also

a very important step, because improperly extracted characters are usually

impossible to recognize correctly with currently used methods. The most com-

mon method of character segmentation is initial oversegmentation – finding

some set of potential splitting points in the graphical representation of the

word and then attempting to eliminate the improper ones. This paper con-

tains a list of popular approaches for generating potential splitting points and

methods of verifying their correctness.

Keywords: recognition, segmentation, character, handwriting, cursive, overview.

1. Introduction

Off-line cursive handwriting recognition can be employed in a variety of real word
tasks, such as: processing handwritten bank cheques, reading addresses from en-
velopes, analysis of handwritten forms and, generally, in converting scripts like notes,
historical documents, letters etc. to a fully digital (searchable, easily navigated and
manipulated) form. The broad range of significant real world applications and the
considerable difficulty of the task both contribute to the fact that there are many
known methods of performing cursive word recognition – one suited better for some
applications and some for the others.

44

Existing methods of cursive handwritten word recognition can be assigned to four
major categories based on the usage of character segmentation [1, 2, 3, 27]:

1. Holistic Approach

Systems based on this approach (also called a global approach) try to recognize
entire words, without splitting them into single characters. Most popular
methods among this group are based on analysis of the number and order
of ascenders, descenders, loops and vertical strokes. They often rely on heavy
dictionary searching that is costly and prone to be mislead by spelling errors.
The detailed description and examples can be found in [26].

2. Classical Approach

In this approach character segmentation strictly precedes character classifica-
tion and hence word recognition. The image of a word is divided into segments
that should represent single characters and are passed to next steps. No feed-
back from those later steps is used.

3. Recognition-Based Segmentation Approaches

Character segmentation and character classification steps are not totally sep-
arate. Degree of connection between them vary from a solution to a solution.
However, the most common general approach is to split words into segments
that should be characters, pass each segment to a classifier and, if the classi-
fication results are not satisfactory (e.g. some measure of belief requirements
is not met), call segmentation once more with the feedback information about
rejecting the previous result.

This and previous (2) groups are often jointly referred to as analytical ap-
proaches [26, 29].

4. Mixed Approach

Systems that belong to this group contain elements from at least two groups
mentioned above. Some of them use holistic recognizers to lexicon reduction
or verification of most probable hypotheses obtained by segmentation base
techniques [27]. Other examples include systems based on human reading
models [27, 28]. Their recognition phase, in general, can be divided into two
parts. In the first one, global features (related to a word shape – e.g. word
length, ascenders, descenders and loops) are extracted from the image and
holistic recognizer uses them to select a short list of elements with a compatible
shape from lexicon. If the analysed word can be identified as one of them
with a satisfying degree of confidence, recognition is completed. Otherwise,
analytical approaches are employed to extract single characters from the word
image.

The variations in writing styles and flaws in individual handwriting skills cause
correct performing of the segmentation without classification feedback almost im-
plausible. The most accurate analytical systems belong mainly to the third group
above. Most of algorithms constructed in recent years fall to this group as well.

45

In methods belonging to the second group, the segmentation achieved after the
segmentation step is final, and finding it requires finding the correct number of
segments. However, in methods from the third group it is not necessary. Moreover
– generating more candidate points might be necessary if some of them are rejected
by a classifier. Those candidates can be generated as needed – if some previous
ones were rejected. Alternatively some pool of potential points might be initially
generated. Eventually, only the most probable or plausible points will be selected
with the help of a classifier. This selection may take different forms: either implicit
(e.g. when using Hidden Markov Models [27]) or explicit. In the latter case the
tentative evaluation of the candidate points at the segmentation step is useful to
find the order in which the points should be presented to the next step. In all those
cases decision on which candidate split points will be finally used is taken together
by a segmentation and classification module. The last case is employed to great
extent in recent publications.

Main steps of the methods described as the last case above take often the form
of:

1. find many possible candidate split points,

2. tentatively evaluate those points,

3. reject those that are very unlikely to be the correct split points and, if neces-
sary, add missing ones,

4. present the candidate points to the classification step in some order taking into
account their preliminary evaluation.

This paper presents algorithms based on those steps with emphasis on generating
a preliminary pool of candidate split points and verification of their validity.

2. Finding candidate split points

2.1. Methods based on the projection analysis

2.1.1. Methods based on the vertical histogram

A vertical histogram (also called a vertical projection) is a function assigning to
each column of an image the number of black pixels found in that column (or just
pixels not in background colours in case of not binarized images). Vertical histogram
analysis was one of the earliest techniques used to find possible splitting points. This
method allows for easy detection of empty columns, which very probably might be
white spaces between successive letters. It can be also helpful in detection of vertical

46

strokes and parts with multiple lines (unfortunately a vertical histogram does not
provide enough information to undoubtedly distinguish those two cases).

Early simple methods assumed segmentation points to be in places, where his-
togram values were below some given threshold. That threshold might be calculated
based on a mean line width (pen thickness) or, even simpler, as a percentage of a
mean histogram value. Simplicity and low computational complexity (especially in
the case, where the pen thickness was not calculated) are unquestionable advantages
of this solution, as well, as being able to detect horizontal ligatures between adjacent
letters very well. However, it also has several serious shortcomings, such as:

1. dividing characters that contain valleys (i.e. handwritten k, l, m, n, r, u, v, w,
y),

2. dividing loops (straight in the middle of the loop is the most common case),

3. inappropriate separation of fragments that are minor in size, but still have
major influence on recognition,

4. sensitivity to a threshold value (often generates great numbers of candidate
points or – in the opposite case – omits proper splitting points),

5. a single real separating place can appear as many points,

6. unsuitable for slanted cursive writing.

Drawbacks 1 and 2 are not specific to this solution but persist also in many more
sophisticated ones. General difficulties with eliminating them are one of the reasons
why an oversegmentation approach is applied. Problem from point 5 manifests itself
as all columns with single non-vertical strokes being marked as candidate splitting
points. It can be eliminated by simply choosing from the group of adjacent candidate
splitting points the one with the least histogram value (as illustrates Fig. 1). In case
of slanted writing, columns with ligatures are often crossed by strokes from two or
sometimes even three characters, which increases their histogram values significantly
and makes their recognition as splitting points impossible with this method. The
slant correction is then essential preprocessing for all methods based on vertical
histogram analysis.

Detection of steep changes of a histogram is a little more sophisticated yet still
intuitive method for finding candidate split points. Steep increase of the histogram
value means a beginning of the character, while steep decrease, its end. Such a rule
would suggest that restricting the method to just one of the cases would be enough.
However, this technique leads to omission of many real split points. For example –
if the method only detected decreases, it would not detect a split point between a
character that ends with a soft histogram value decrease and the next one. Analogical
problem would occur if we were detecting only the steep increases of the histogram
density, as shows Fig. 2.

Doubling some of the split points is an intrinsic trait of this method. This
happens, for example, in the case of empty columns (e.g. without foreground pixels)
and most horizontal ligatures between two letters (the latter could also be treated as
an advantage, because it allows the ligatures removal and, in consequence, simplifies
character recognition). However, this is not nearly as troublesome as producing

47

(a)

(b)

(c)

Fig. 1. Oversegmentation based on a vertical histogram. (a) An original image.
(b) An image histogram. (c) Potential split points: columns with the histogram
value less than 34% of a mean value are in light grey, dark grey lines indicate
histogram minima

(a)

(b)

Fig. 2. Oversegmentation based on a vertical histogram. (a), (b) Solid lines mark
steep increases of the histogram, dashed – steep decreases

48

multiple candidate split points per one real split point that occurred in the previous
method. With this solution also valleys are split less frequently – only if their
edges are very steep, near-vertical lines. Loops are still sometimes split, not in
the middle, but near their inner borders (a contour). The main drawback of this
method is possibility of cutting small horizontal fragments of letters such as E, F, L,
T and separating distinct vertical strokes from the character body. It happens more
often that with the previously described method. Despite (still persisting) numerous
shortcomings this solution is still applied for preliminary and redundant recognition
of split points [4, 5].

Richard G. Casey and Eric Lecolinet in [1] reported also some other methods
based on the vertical projections, like finding maxima of the second difference of the
projection or analyzing projection of an image after applying an AND operator to
its columns, but this methods are applicable mainly to systems processing machine
typed words.

2.1.2. Methods based on the angled histogram

Split points lookup based on vertical histogram analysis fails when used on slanted
handwriting. Slant of even minor angle causes the methods from point 2.1.1 to
not detect many inter-character connections. Of course, slant of the image can be
corrected during preprocessing, which is common in OCR systems, also those not
using a vertical histogram. Examples of such algorithms can be found in [6, 7].
A slant corrections process is, however, a major change of an input image and thus
can alter information contained there and mislead further steps. One of the solutions
where additional preprocessing can be avoided while preserving the simplicity of
using density analysis, is the angled projection. The angled projection is similar to
a vertical histogram – foreground pixels are counted along a line. Those lines are not
vertical, but make an angle comparing to an image edge. Friday and Leedham ([8])
proposed a split points detection method where they examined 17 histograms made
with different angles (every 2 degrees from –16 to +16 from vertical). Yanikoglu
and Sandon [9] also used a constant set of angles. They broadened the range of
angles resulting in –30 to 40 degrees, while increasing step to 10 degrees. In the
case of both methods the cuts were performed along the chosen projection angles.
Suggestions on which angle to choose can be found in the article of Frank de Zeeuw
[10], where a slant correction method based on the angled projection was introduced.
In Zeeuw’s work angled projections for angles between –45 and +45 (which is the
range containing most of the cases in handwriting) were found. Next, for all of them,
the heights of histogram peaks were measured. The one with maximum heights was
chosen. The angle step was variable – initial was 5 degrees and decreasing with
peaks heights increase. The approach is based on the assumption that a histogram
corresponding to a word written straight up should have more pronounced peaks
and valleys (i.e. extrema). Example of this can be seen in Fig. 3.

49

(a)

(b)

(c)

Fig. 3. Projection analysis of slanted words. (a) An original image. (b) A vertical
image histogram. (c) An angled image histogram corresponding to the dominant
slant

2.2. Methods based on the profile and contour

A profile is a 2D image made from a binarized connected component by leaving only
outermost foreground pixels in each column. The sets of points placed at highest co-
ordinates (so called an upper profile) and those placed on lowest coordinates (a lower
profile) are examined separately. This feature is very easy to obtain and to analyze
in order to determinate candidate split points. The local extrema of each part of the
profile are considered as the potential split points. The minima of the upper profile
are most intuitive. Splitting the component in these places corresponds to the idea
on which ”drop falling” algorithms are based. The technique used there is splitting
the characters in a place where a ”drop” released at the topmost black pixel of the
left-side character would ”fall”. In this way centers of lower convex ligatures, which
are very common in cursive handwritten words, can be detected. As well, as starting
points of ligatures going up from left to right characters (which is the common shape
of connections coming out of a loop). Unfortunately determining cuts depending on
upper profile minima leads to cuts in valleys of letters m, n, u, w, v, y, separating the
upper short line of r and dissecting of vertical strokes from the body of a character
in letters b, d, h, k, p. On the basis of maxima of the lower profile a letter can be
easily cut off the ligature that comes from the preceding character and approaches
from below (which is also a common case). However, such points occur also in many
places where cuts would intersect single letters, such as separating hooks from a, u,
d, cutting letters containing arcs pointed up (like in handwritten h, k, n, m) in the
middle and splitting the letter w. Lower profile minima are sometimes interchange-
able with upper profile minima, as both appear at the centers of lower ligatures.
However, the former are considerably more frequent in handwriting. They occur at

50

the lower ends of vertical or nearly vertical strokes (as in letters f, h, i, k, m, n, p, r,
w), where they can sometimes be used for determining a leftmost bound of the let-
ter. Unfortunately they also appear in the centers of the loops and characters with
a curved bottom (like a, b, c, d, e, g, k, l, o, p, s, u, w, y) where they are completely
spurious. The upper profile maxima are rarely used as they commonly appear in
the center parts of letters rather than in connection points. Fig. 4 illustrates the
contour based segmentation.

In cursive handwritten 3 or even 4 lines can cross a single column. By examining
a profile only connections made by uppermost or lowermost lines can be detected.
Any connection that is hidden from the profile by such lines will be missed. That
is why extrema of the image contour of the word can be analyzed instead of or
additionally to profile extrema. Likewise for the profile, lower and upper contours
are distinguished. Together they form a so called external contour. The upper
contour is found by tracing the contour on the upper side of the writing strokes
from the leftmost to rightmost black pixel. The lower contour – analogically but
on the lower side of the line. There are other definitions of the upper and lower
contour. In [11] the external contour is traced counterclockwise. Fragments where
it runs mostly from right to left are marked as the upper part and those when it
runs mostly in the opposite direction are marked as the lower part. Regardless of
the chosen definition the split points are looked for in local extrema of contours.
The methods rarely make use of all kinds of extrema (with notable exceptions as
[11]). Usually only pairs or subsets are used. In numeric strings segmentations
(postal codes on envelops or numbers on bankchecks) a very popular solution is
to use so called min-max algorithms, where upper profile minima and lower profile
maxima are used. The idea that stands behind them is that in the touching points
of two characters the distance of the upper and lower contour should be rather small
(preferably equal to the average stroke thickness). This method is less satisfying
in the case of overlapping characters or characters with more than one touching
point. Nicchiotti and Scagliola ([12]) made use of minima of three contours: the
upper, lower and additional, ”median” contour, obtained only for columns with
3 black runs. Minima were considered to be correct split points only if it was
possible to obtain the appropriate contour in every point of their neighborhoods.
Cuts were performed along straight but not necessary vertical lines. Vertical lines
were preferred, but if the number of crossed foreground pixels was greater than some
limit, which was set based on the width of the core region (a region between the
baseline and upperline, that is without ascenders and descenders), other direction
angled from –45 to 45 deg. from vertical lines were tested. The angle minimizing the
number of intersected pixels was chosen. In [13] only minima of the upper contour
have been used. Bozekova ([14]) proposed a method for checking if the authors
of the two documents are, in fact, the same person, where upper contour minima
placed near lower contour minima (approximately the pen thickness apart or closer)
were considered as segmentatation points. Mao, Sinha and Mohiuddin designed
an address recognition system, in which for finding candidates splitting points in
the oversegmentation step horizontal stretches and high curvature points of these
contours were used additionally to lower and upper contours minima.

Oliveira in [15] proposed an interesting method of numeral string segmentation in
which contour analysis is supported by the skeleton analysis (methods for obtaining

51

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. Oversegmentation based on the word profile and contour. (a) An original
image. (b) A word contour. (c) A word profile. (d–f) Potential split points: (d) lower
contour minima; (e) lower contour maxima; (f) upper contour minima

52

a skeleton can be found, among others, in [20, 17]). Apart from profile and contour
extrema, also intersection points of the skeleton (defined as black pixels with at least
2 black neighbors on the skeleton) were searched for. Skeleton intersection points
are often located near the stroke connections, therefore they can reveal ligatures
between characters, also in the case of strongly skewed or overlapped characters,
which is more difficult for contour or profile analysis. Moreover, skeleton paths are
very useful for determining a line of the cut. Oliveira’s method made two kind
of cuts: parallel to a skeleton path and orthogonal to it. The decision which to
choose was made based on analysis of placing skeleton intersection points relative
to profile or contour extrema. Skeleton analysis is highly supportive in classification
of handwritten Chinese characters (which is a consequence of the specific shape of
that writing). An example of that method used for segmentation can be found in
[18].

Oversegmentation methods based on the structural features like the contour,
profile and skeleton produce less spurious split points than methods based on the
projection analysis and miss less of the true split points. They are also not that
vulnerable to the slanted writing. However, neither profile or contour extrema nor
intersection points of the skeleton will consider natural empty spaces between dis-
connected characters as split points – in particular empty columns are not detected,
which is certainly a drawback. That is why such methods have to cooperate with
connection component analysis. Cut line selection is essential here: it should not be
a straight line coming through a found point, as this can easily lead to cutting off
fragments of a single character, especially when establishing a segmentation point
based on the lower profile or lower contour minima. It is even more important in the
case of systems that do not implement a slant correction as a preprocessing step.

2.3. Methods based on the background analysis

Segmentation paths should lead between the characters, that is – in the background,
only occasionally intersecting written lines. Because of that, an approach focusing on
the image background while finding the splitting paths may be plausible. Methods
based on the background can be divided into two groups:

1. based on the background skeleton,

2. based on background regions analysis.

Fig. 5. A word image and its background skeleton

53

2.3.1. Methods based on the background skeleton

In methods of this group a skeleton of the word background is found first (Fig.
5). A regular thinning algorithm used normally to produce a foreground skeleton
can be used here. Because some solutions require a word to have a small empty
space at each side (that is – it should not cross the image border), adding a thin
background-coloured frame around the word before starting the thinning process can
sometimes be necessary. In simplest applications a background skeleton is used for
separation of non-touching characters [18, 19]. In contrast with methods based on
histogram analysis, they can unambiguously separate characters that, although with-
out crossing strokes, have intersecting bounding boxes. Background skeleton lines
form complete segmentation paths, that would not separate fragments of processed
characters, which is a considerable advantage especially towards the straight-line
cutting paths.

Comprehensive analysis of the background skeleton allows for extracting infor-
mation useful also when separating touching characters. A system recognizing con-
nected handwritten digit strings described in [20] is one of the examples. In the
aforementioned system skeleton fragments where divided into several classes called
segments: base segments – lines formed between the foreground and the upper im-
age boundary (called upper-base segments) and between the foreground and the
lower image boundary (called lower-base segments), side segments – between the
foreground and the left or right boundary (not used in segmentation), hole segments
– formed inside background regions enclosed totally within foreground strokes and
– most interesting for segmentation purposes – branch segments – i.e. segments
starting from the base segments and directed towards the interior of the image (a
branch segment is named the upper or the lower branch segment depending on
whether it is connected with the upper or the lower base segment). Splitting points
where searched for in proximity of certain characteristic points (feature points) of
the background skeleton. Such points are: end points (points with only one black
neighbour), fork points (points connecting branches, with at least three black neigh-
bours) and corner points (points of abrupt changes of a line direction). Potential
cutting lines where made along lines connecting a feature points placed on different
segments or vertical lines connecting a feature point located on the upper segment
(the upper base or upper branch segment) with the lower base segment or a feature
point located on the the lower segment (the lower base or lower branch segment)
with the upper base segment. Liang and Shi in [19] used a similar strategy in seg-
mentation of touching Chinese characters. To reduce the cost of searching potential
segmentation paths, they restricted the method only to fork and end points (called
further background skeleton feature points) of so called major branch segments (i.e.
fragments of the background skeleton from a fork point in the upperbase segment
or the lowerbase segment to the end point or the last fork point in upperbranch
segments or lowerbranch segments). Those segments are in general branches that
extend furthest towards the basesegment opposite to the one of their origin. For
determining segmentation paths fork points and corner points of the foreground
skeleton (called further foreground skeleton feature points) were used as an aid.
Two types of segmentation paths were created. First consisted of paths formed by

54

connecting feature points from the upper major branch with the ones on the cor-
responding lower major branch. Second contained all paths formed by connecting
background skeleton feature points with nearby foreground skeleton feature points.
Determining segmentation paths based on both background and foreground skeleton
feature points appears also in [18]. However, the foreground skeleton points were
the primary ones there, and the background skeleton points – secondary ones.

The main advantage of using the background skeleton in oversegmentation is
that the determined complete or at least partial segmentation paths have a useful
trait of intersecting only selected lines while avoiding others that could stand in their
way. The possibility of cutting off the small fragments of characters does not exist
here. Easiness of loop detection (loops are indicated by small isolated fragments
of the background skeleton) is another quality of this method. Disregarding such
fragments in the process of segmentation point searching will secure the algorithm
against unwanted loop segmentation. Slanted strings of touching characters can be
segmented as well as the straight ones. A background skeleton feature point of some
kind is found near almost every correct segmentation point, so thorough analysis of
the skeleton should yield segmentation with only very low percentage of undetected
split points. However, like methods described before, this one can also separate
hooks or tails from letters like a, e, d, split valleys or cut off the vertically orientated
strokes from the character body in less neatly written characters b, d, h, k, p, q, r.

2.3.2. Methods based on the background regions

Background regions are the white areas between two successive black strokes (orien-
tated more or less vertically). They are detected by scanning all image rows from top
to bottom and from left to right searching for connected groups of background pix-
els. It is worthwhile to notice that, in this way, also regions between lines belonging
to non-neighbouring characters will be found. Because such regions are irrelevant
to segmentation, regions wider than twice a mean character width should not be
considered. Also too small regions should not be taken into account, as they can be
a result of noise or be created inside lines due to imprecision of a writing tool. For
handwriting recognition purposes, four categories of regions are distinguished:

1. Face-up: the lower part is enclosed by the foreground strokes and the upper
part is open to exterior of the word.

2. Face-down: the upper part is enclosed by the foreground strokes, the lower is
open.

3. Loop: the whole region is enclosed by foreground strokes.

4. Other: any region not fitting into any of the above categories (for example
connected regions not enclosed neither from below nor from above).

Examples of regions from main categories are shown in Fig. 6. Determining
a category that a given region belongs to is done with vertical scan of all its columns

55

Fig. 6. Background regions: L – Loop, FU – Face-up region, FD – Face-down region

and counting the number of transitions from the background to foreground color
(details can be found in [21]). The most interesting from the segmentation algo-
rithm creator’s point of view are the two foremost. In cursive handwriting, ligatures
between two adjacent characters most often form valleys or concavities, which, from
the background region analysis point of view, represent the face-up regions. Some
letters (like m, n, r) connect to others with a line placed above the vertical coordinate
of the centre of gravity. In this case a ligature creates a face-down background re-
gion. Sometimes letters are connected by lines that are directed from the lower part
of the left character to the upper part of the right character. Mostly in cases where
a descender of the first letter (in letters g, j, y) is directly connected to an ascender
of the second one (in letters b, f, h, k, l, p). In such case a pair of background regions
can be formed that share a common line: a face-up region followed by a face-down
region. This situation can be utilized for detecting the beginning as well as the
end of the auxiliary line connecting two neighbouring characters, which allows for
discarding it in purpose of making further character classification easier. Loops are
mostly integral parts of letters (a, b, d, e, f, g, o, p), so not good candidates for split
points. The background open from both sides – the upper and lower, are common
between characters that were originally completely separated. Whether to trace a
segmentation paths inside background regions from the 4th category depends then
on the kind of input for the whole segmentation solution – images of whole words,
or connected components.

The idea of the background regions based segmentation is to trace a segmentation
path inside the face-up or face-down region. However, there is no universal rule
stating exactly how such a dividing line should be formed. Xiao and Leedham in
[21] recognized additionally two subcategories of each face-up and face-down regions
categories: wide and narrow regions. A shape of the region was the main factor
when determining region membership to one of the subcategories. Wide and obtuse
regions come into first one, narrow ones ended with sharp valleys or peaks into second
one. Because usually wide regions are formed by the additional strokes connecting
two letters, segmentation points were found in the middle of the lower (in case of
face-up regions) or upper (face-down) bounding lines. With narrow regions, their
convexes were used as the segmentation anchorage. Segmentation paths were traced
along straight lines directing one of the 6 constant directions: left-down, downward
and right-down for the face-up regions and left-up, upward or right-up in the case of
the face-down regions. The decision which direction to choose was made to minimize
the number of foreground pixels passed by the line.

56

The oversegmentation algorithm in the segmentation method described in [21]
analyzed consecutive connected components obtained from the image of the word.
If the component was two times wider than a mean width of the character in the
examined text, it was made divided by a path going through every face-down back-
ground region. It led to creation of smaller sub-components, the number of which
was greater by 1 from the number of all face-down background regions in the di-
vided component. Each sub-component, with width more than two times greater
than a mean character width was divided into smaller ones traced through its all
face-up background regions. Zheng, Hassin and Tang used background regions de-
fined similar to those described in [21] in segmentation of Arabic characters [5].
However, background regions were used to assess the validity of candidate splitting
points generated with the vertical projection analysis method.

3. Evaluation of split points correctness

The goal of oversegmentation is to minimize the risk of segments containing more
than one character appearing as output of the segmentation process. This goal is
approached by generating greater number of candidate points than the expected
number of true split points. The final decision concerning selection of appropriate
splitting points is influenced or simply made by the classifier. However, because
classification is a relatively time-expensive process, it is desirable that the number
of image segments undergoing classifier evaluation was not too much greater (though
still greater) than the number of characters in the word being recognized. That is
why a preliminary verification of splitting points validity, aiming at rejecting those
points which have comparatively small chance of being the right ones, is a necessary
step in oversegmentation based segmentation methods. The methods for preliminary
verification of candidate split points mainly fall into three general categories:

• rule based approaches,

• cost function optimization based approaches,

• machine learning based approaches.

There are also many solutions combining different approaches (in most cases this
means that an evaluation by the cost function or neural nets is preceded by checking
simple rules). Examples of systems using each of the approaches are given in the
following paragraphs.

57

3.1. Rule based approaches

Rule based solutions are founded on the observation that both characters and the
connection points expose some universal (even if only in the area of one script) traits,
lack of which causes immediate qualification of the examined object (a character or
a connection between two characters respectively) as invalid. Rules utilized for
assessment of potential segmentation points or paths are often intuitive, as they
usually emerge directly from analysis of a characters shape, their typical positioning
relative to a baseline and how the different characters can be connected to each
other. The rules for addition of missed splitting points or adjusting the existing
ones (by slight transposition) are also found among commonly applied rules.

One of the most often utilized rules forbids segmentation paths traversing loops.
In a neat handwriting loops should be found only in characters a, b, d, e, f, g, o,
p and q, although in somewhat less neat handwriting they are sometimes found
in the upper parts of letters b, h, k and l. In all those cases loops are integral
parts of characters and, indeed, should not be divided among different segments.
However, applying this rule can block detection of inter-character connections in
even less neat handwriting, where accidental loop forming can occur (for example in
pairs with first character c: ca, cb, cc, etc.). A rule forcing the segmentation points
directly before and after loops is another one with common application. This one
can lead to erroneous separating a loop from a vertical stroke in letters b and d, if
those parts are not very tightly attached. Additionally, this rule is best restricted to
the loops positioned between upper and lower baselines, as then it does not separate
upper and lower parts of letters b, h, k or l, if the loop is formed in their ascenders.

Rules examining the size and placing of a potential segment are also often used.
Segmentation paths that cause the segments to be smaller than a certain threshold,
as well as those that will cause the segment to be completely above the upper or
below the lower baseline are rejected. Segmentation points, that are too close to
each other are combined into one (a threshold value for their distance is calculated
from a mean stroke thickness in the analyzed word).

A method introduced by Nicchiotti and Scagliola in [12] can serve as an example
of a segmentation method in which applying set of rules is the only form of initially
proposed points assessment. A set of possible segmentation points in this method
was created from local minima of the upper, lower and median contours. All rules
described above were used to verify correctness of these points. Verma in [22] en-
gaged a similar set of rules for checking a pool of points made with vertical projection
analysis. The splitting points inside loops were removed, while points after the end
of the loop were added. So called hat shapes (shapes ∨ and ∧ appearing in letters
m, n, r, v and w) where treated in a similar manner. The additional rule was re-
sponsible for generating new splitting points between two splitting points that were
more distant than some threshold value calculated from a mean distance between
all splitting points. Verma, however, did not restrict the method to verification with
rules, and utilized neural networks to find and remove points lying too close to each
other.

Apart from those for removing spurious and adding missing, also rules for im-
proving initially formed segmentation paths are used. In a system designed to rec-

58

ognize handwritten dates in Brazilian bank cheques described in [13], rules have
been used for moving segmentation paths determined initially as the vertical lines
going through the local minima of the upper contour of the binarized word image.
Transposition was made when: the segmentation path crossed an inner loop before
reaching the lower contour, was tangent with the lower contour or crossed to many
foreground pixels. A new point was looked for in the proximity of the original point
first right, and when no satisfying segmentation point was found, the search con-
tinued left to the original point. Additionally, points being too close to each other,
or being too close to left or right boundaries of the connected component being
examined were eliminated.

In [23] rules were used directly for establishing a lower and upper bound for the
number of processed segments. As it is pointed out in the [23], most characters that
fit between upper and lower baselines (a, c, e, etc.) have the width similar to their
height. Other letters expose similar characteristic after removing their ascenders
and descenders. The only exceptions in English alphabet are characters m and w,
which width, in general case, can be approximated as 3

2height and characters i, j and
l, where the width is more or less 1

2height. The height appearing in those formulas
is an estimated height of the main body of the word (without considering ascenders
and descenders). Vertical projection minima are considered the segmentation points,
their number, however, is restricted to Lw/Hm, where Lw is a word length, and Hm

– height of the main body of the word. In addition, the distance between every two
adjacent points cannot be less than 1

3Hm. On the other hand, if the distance between
two successive segmentation points is greater than the main height, the algorithm
searches for a minimum of the vertical histogram in a desired area between them to
place there a new segmentation point.

Aforementioned rules are based on very general properties of characters and lig-
atures in handwritten words. In more complicated approaches the rules are created
based on more specific traits of certain groups of characters. For example Xiao
and Leedham ([21]) for the purpose of verification of the split points achieved with
background regions analysis, divided analyzed fragments among four classes: com-
ponents covering only the middle zone of the word (a space between upper und
lower baselines) such as lowercase a, c, o or m (Class One), components covering
the upper zone and the middle zone of the word, such as most uppercase charac-
ters and lowercase characters with ascenders (Class Two), components covering the
middle and the lower zone of the word, that is creating characters with descenders,
i.e. g, j, p and y (Class Three) and components covering all three zones, such as
lowercase f (Class Four). Pairs of adjacent segments were analyzed for verification
if they belonged to one or more characters (which is equivalent with checking va-
lidity of the segmentation point separating the segments). There were four most
common types of cases: both sub-components belong to the same class (Type 1),
one is of Class Two (Type 2), one belongs to Class Three (Type 3) and the last
one: one of the components is of Class Four. Based on the four component classes,
four types of pairs of components and the spatial relationships of components and
background regions that were crucial in separating given components, a set of rules
was defined, some of that rules forbidding or allowing for deletion of a given splitting
point from the candidate splitting points pool. Rules based on detailed analysis of
specific alphabet characters have been also used for splitting points verification in

59

the automated system for segmentation of strings of Arabic characters, described in
[5].

3.2. Approaches based on cost function optimization

Verification is often made based on a cost function analysis. The exact form is cre-
ated mostly with regard to certain features of split points or split paths. Sometimes
resulting segments charasteristics are also taken under consideration, as well as gen-
eral charasteristics of the word like the line thickness. When the function formula
is ready, potential split points are given as arguments, and those minimising (or,
in some cases, maximising) the function value are selected as proper ones. In [9]
Yanikoglu and Sandon proposed a segmentation method in which verfication was
conducted with a cost function based on writing style parameters that are charc-
teristic for a particular text author: the pen thickness, average letter width and
height of the strokes. The dominant slant also considerably influenced a segmen-
tation process. Potential points splitting connected components were determined
using angled projection analysis made in five directions, depending on the dominant
slant. The image was split among lines drawn at angles for which the procjection
was calculated. Segmentation paths were therefore formed by a pair: an angle of
the separator line and a point on the baseline (a horizontal coordinate of the point
at which this line intercepts the baseline). Proper splitting points were selected it-
eratively from the left border of the image. Given the segmentation point and its
corresponding separator line angle, a point minimising the cost function within the
pool of potential splittig points being on the right from the last one, was selected.
In the case of several points sharing the minimum, the closest was chosen. The cost
function was calculated according to the formula:

C(a, p) = w1

(
p− s

W

)2

− w2

(
p− s

W

)

+ w3

(
t

T

)

+ w4

(
h

H

)

, (1)

where p is the point on the baseline, a is the separator line angle, s is a given previous
segmentation point, t is the number of foreground pixels cut by the separator line,
h is the height of the highest placed one of these foreground pixels and W , T and H
are estimated values of style parameters: the average word width, pen thickness and
total height of the line. Coefficients wi are weights differentiating influence of partic-
ular elements on the cost function value. They are found using linear programming
described in [9]. The same cost function was applied for resolving the problem of
multiplicated segmentation points. The pool of potential splitting points was in this
case the union of points achieved separately for each angle with projection analysis.
Therefore many splits were respresented by several close but not identical splitting
points. Before the actual verification, one point was selected from each such a group,
the one minimising the cost function value. The writer indepence is, undoubtedly,
a positive trait of this cost function.

An example of another approach can be found in [19]. Liang and Shi used a cost
function formed by detailed analysis of characteristics describing segmentation paths

60

for segmenting handwritten Chinese character strings. They used a background
skeleton analysis for generation of potential splitting paths. Next, for each such
path a feature vector was created based on a set of spatial characteristics of the
path such as: spatial coordinates of the end points and outermost points on the
path, its horizontal centre or the number of foreground pixels through which the
path is passing. The cost function was the mixture probability density function:

P (x | Θ) =

m∑

i=1

aipi (x | Θi) , (2)

where

pi (x | µi,Σi) =
e−

1
2 (x−µi)

TΣ−1
i

(x−µi)

(

(2π)
d

2 | Σi |
1
2

) , (3)

Θ = (a1, . . . , am; Θ1, . . . ,Θm) , (4)

m∑

i=1

ai = 1. (5)

Parameters were established using the expectation-maximization (EM) algo-
rithm. It was trained on feature vectors obtained from the correct segmentation
paths. When the cost function was ready, those points among the potential splitting
points, that maximised its value were selected.

3.3. Machine learning based approaches

In machine learning based approaches separate classifiers, designed specially for
splitting points verification, are used. Each point from the potential splitting points
set has a feature vector assigned, which in turn makes the input of a classifier
(a neural network, for example). The result of classification decides whether the
candidate points should be removed from the pool or left there. The ability to
cooperate with any method of generating candidate points is a remarkable benefit
of this approach. Feature vectors are usually created based on properties of close
proximity of splitting points under analysis.

In [24] the classifier used for this task was a neural network with supervised
learning. Splitting points for the training set of the network were found with several
techniques (projection analysis, contour analysis, loops detection). Next, they un-
derwent manual classification into two classes: ”correct” and ”incorrect”. Only the
validity of the x-coordinate of splitting point was assessed (in contrast to verifying
exact segmentation points or segmentation paths). The feature vector was made as
follows. From the binarized image of the word, a rectangle of some small, preset
width, containing the candidate point, was chosen. Afterwards, this rectangle was
normalized in size, and divided into square-shaped windows of some set and small

61

size. For each of the windows a quotient of the number of foreground pixels found
in the window to the window size was computed. These numbers were the elements
of the feature vector. The class value was encoded as 0.1 for ”incorrect” points and
0.9 for points classified as ”correct”. In the experiments, vectors of length 42 were
used (each splitting point was represented as 14*3 windows). After training vectors
representing points generated for words that were meant to be automatically seg-
mented were given as an input for the network. Only those verified by the network
as correct were considered further as possible splitting points.

An interesting approach was presented in [25]. Authors introduced a filter re-
ducing the number of unnecessary cut points generated with an oversegmentation
approach. As it was emphasized in the article, spurious cut points generate over-
segmented characters (digits in the case of the presented method). Because of that,
cuts were not analysed with respect to some structural characteristics, as it is with
most of the earlier methods, but with respect to properties of segments generated
by them. It introduces an additional context, and so increases the information
volume taken into account while verifying segmentation points. Because filtration
was viewed as a two-class problem, (necessary and unnecessary segmentation cuts),
SVM was used to model it. For each of the cut points undergoing filtration, a pair of
components that this cut point partitions the segment to, as well as the whole, un-
partitioned segment (that is the case where a cut point was not taken into account)
were analyzed. Each background pixel within all three components (two after split,
and one before) had a label assigned. This label was a number of foreground pixels
accessible from that pixel in the 4-Freeman directions (those flags were described as
concavity levels). Pixels that were inside loops were labelled separately. Next, the
algorithm searched for pixels with labels different in full (i.e. not splitted compo-
nent) from those in sub-components. Such pixels achieved another label, distinct
from previously described kinds. The whole component was divided into the con-
stant number of frames. In each frame a number of pixels marked with each label
was counted. Values achieved in such a manner made a feature vector representing
a given cut point. Because regions were split into 2*3 frames, and 7 different labels
were used, vectors had 42 values (the same as in the solution described previously).
At the cost of decreased granularity (a smaller number of frames), a broader spec-
trum of information was given as a SVM input. Authors justify such selection of
features by observation that when digits are segmented correctly, there is greater
difference in concavity levels between the unsegmented part and segmented parts,
than if the digits are over-segmented. That is why pixels with those changes –
marked here with a special label – are so important. They also state, that those
changes apart from having different amount occur in different areas of the consid-
ered piece when the fragment is split correctly than they occur in over-segmented
digits. This behaviour is detected by having those 6 frames, covering different areas
of the considered image fragment. This filter was designed for filtration of cut points
generated for strings of digits. Authors described experiments done with cut points
generated by two algorithms performing oversegmentation: the contour and profile
based Fenrich’s algorithm and the skeleton based algorithm proposed by Chen and
Wang. For the first one the 83% decrease in the number of unnecessary segmentation
hypothesis was reported.

62

4. Conclusions

In recent years methods using oversegmentation outnumbered other methods of seg-
mentation. It comes from a fact that proper segmentation of handwriting is often
impossible to separate from recognition of single characters. In the case of digit
strings the problem is significantly easier to solve, but also here combining steps
of segmentation and classification by using oversegmentation leads to considerable
improvement of results. Generating of potential split points itself is done in vari-
ous ways. Each has it drawbacks and advantages, none is universal. Selection of
a particular technique should be dependent on the task, primarily on the kind of
alphabet the character strings are build over. For example, methods based on the
contour are especially suitable for the latin alphabet and its derivatives, while for
Chinese characters methods based on the skeleton analysis (both foreground and
background) perform much better.

Because in the case of systems based on oversegmentation omitting some proper
splitting points in the stage of generating candidate splitting points has great nega-
tive impact on accuracy of the whole solution, often two or more methods described
in Section 2 are combined to minimise danger of such error occuring. However,
such a solution comes with increased computational complexity and need for solving
a problem of single candidate splitting points being seen as multiple: some of the
possible splitting places are detected by multiple methods. Points representing the
same split, but generated with different methods will often have slightly different
positions. The problem of selecting the best point is not trivial, because quite often
moving a segmentation path even only by a few pixels can significantly influence
ability to properly recognise the character. Additionaly, in case of letter ”i” it is
possible, that two correct segmentation points are only 1 pixel apart. That fact
causes the decision, if two candidate points are in fact the same, to be impossible
to made based only on the distance between points. In solutions using single tech-
niques the ones that allow to detect most characteristic points that can correspond
to connected characters are chosen. They should be relatively resistant to errors
that come from slant or overlapping lines. Such requirements are, as for now, best
matched by contour based approaches, therefore such solutions are most commonly
used.

The greater number of analysed segments is the greater chance for proper char-
acter classification and recognition of the word. But classification is a time-costly
process, that is why reducing the final number of splitting points generated in over-
segmentation is important. Currently attention is focused on desining new and
improving existing verification methods rather than on developing methods gener-
ating potential split points. Using preset rules allows to reject points having some
clearly defined and easy to check traits, that in most cases disqualify them as split
points. However, variety in handwriting styles and its frequent deformations may
cause strict rules to reject proper splitting points. That is why fuzzy rules are used
more frequently. They are used not to make a binary decision but only to assess the
possibility of a given point to represent a connection between two separate charac-
ters. Such activity brings rule based approaches closer to the cost function based

63

approaches. The cost function, while evaluated on some point, takes into account
more characteristics of a point than a single rule does. This allows for detection
of some dependencies harder to spot with simple visual analysis. This property is
exposed even more in machine learning approaches. There are also solutions that
compile different technique results in the stage of verification. In such cases usually
preliminary assessment of splitting points is done with rule based expert systems but
the actual evaluation is done with neural networks. Great numbers and variety of
emerging solutions suggest that splitting the word image into segments correspond-
ing to single characters is still quite a challenge in handwritten word recognition.

5. References

[1] Casey R.G., Lecolinet E.; A Survey of Methods and Stratiegies in Character Segmen-

tation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7), 1996,
pp. 690–706.

[2] Plamondon R., Srihari S.N.; On-Line and Off-Line Handwritting Recognition: A Com-

prehensive Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(1), 2000, pp. 63–84.

[3] Lu Y., Shridhar M.; Character segmentation in Handwritten Words – An Overview,
Pattern Recognition, 29, 1996, pp. 77–96.

[4] Verma B.; A Contour Code Feature Based Segmentation For Handwriting Recogni-

tion, Proceedings of the Seventh International Conference on Document Analysis and
Recognition, 2, 2003, pp. 1203.

[5] Zheng L., Hassin A.H., Tang X.; A new algorithm for machine printed Arabic character

segmentation, Pattern Recognition Letters, 25, 2004, pp. 1723-–1729.

[6] Nicchiotti G., Scagliola C.; Generalised Projections: a Tool for Cursive Handwriting

Normalisation, International Conference on Document Analysis and Recognition, 5,
1999, pp. 729.

[7] Kavallieratou E., Fakotakis N., Kokkinakis G.; A slant removal algorithm, Pattern
Recognition, 33, 2000, pp. 1261–1262.

[8] Leedham C.G., Friday P.D.; Isolating individual handwritten characters, Proc. IEE
Colloq. Character Recognition and Applications, 1989, pp. 4/1–4/7.

[9] Yanikoglu B., Sandon P.A.; Segmentation of off-line cursive handwriting using linear

programming, Pattern Recognition, 31(12), 1998, pp. 1825-–1833.

[10] Zeeuw G. de; Slant Correction using Histograms, Bachelor’s thesis, Univer-
sity of Groningen, 2006. Available via http://www.ai.rug.nl/~axel/teaching/

bachelorprojects/zeeuw_slantcorrection.pdf.

64

[11] Madhvanath S., Kim G., Govindaraju V.; Chaincode Contour Processing for Hand-

written Word Recognition, IEEE Transactions on Pattern Analysis and Machine In-
telligence, 21(9), 1999, pp. 928–932.

[12] Nicchiotti G., Scagliola C., Rimassa S.; A Simple And Effective Cursive Word Seg-

mentation Method, Proceedings of the Seventh International Workshop on Frontiers
in Handwriting Recognition, 2000, pp. 11–13.

[13] Morita M., Lethelier E., Yacoubi A. El, Bortolozzi F., Sabourin R.; An HMM-based

Approach for Date Recognition, Proceedings of the Fourth IAPR International Work-
shop on Document Analysis Systems, 2000.

[14] Bozekova M.; Comparison of Handwritings, Diploma thesis, Comenius University,
2008.

[15] Oliveira L.S.; Automatic Recognition of Handwritten Numerical Strings, PhD thesis,
Ecole de Technologie Superieure, 2003.

[16] Jang B.K., Chin R.T.; One-Pass Parallel Thinning: Analysis, Properties, and Quan-

titative Evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(11), 1992, pp. 1129–1140.

[17] Huang L., Wan G., Liu C.; An Improved Parallel Thinning Algorithm, Proceedings of
the Seventh International Conference on Document Analysis and Recognition, 2003,
pp. 780–783.

[18] Zhao S., Chi Z., Shi P., Yan H.; Two-stage segmentation of unconstrained handwritten

Chinese characters, Pattern Recognition, 36, 2003, pp. 145–156.

[19] Liang Z., Shi P.; A metasynthetic approach for segmenting handwritten Chinese char-

acter strings, Pattern Recognition Letters, 26, 2005, pp. 1498–1511.

[20] Lu Z., Chi Z., Siu W., Shi P.; A background-thinning-based approach for separating

and recognizing connected handwritten digit strings, Pattern Recognition, 32, 1999,
pp. 921–933.

[21] Xiao X., Leedham G.; Knowledge-based English cursive script segmentation, Pattern
Recognition Letters, 21, 2000, pp. 945–954.

[22] Verma B.; A Contour Code Feature Based Segmentation For Handwriting Recogni-

tion, Proceedings of the Seventh International Conference on Document Analysis and
Recognition, 2003, pp. 1203.

[23] Kavallieratou E., Fakotakis N., Kokkinakis G.; An unconstrained handwriting recog-

nition system, International Journal on Document Analysis and Recognition, 4(4),
2002, pp. 226–242.

[24] Blumenstein M., Verna B.; A New Segmentation Algorithm for Handwritten Word

Recognition, Proceedings of the International Joint Conference on Neural Networks,
1999, pp. 2893–2898.

[25] Vellasques E., Oliveira L.S., Britto A.S. Jr., Koerich A.L., Sabourin R.; Filtering

segmentation cuts for digit string recognition, Pattern Recognition, 41(10), 2008, pp.
3044–3053.

65

[26] Madhvanath S., Govindaraju V.; The Role of Holistic Paradigms in Handwritten Word

Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2),
2001, pp. 149–164.

[27] Vinciarelli A.; A survey on off-line Cursive Word Recognition, Pattern Recognition,
35, 2002, pp. 1433–1446.

[28] Guillevic D.; Unconstrained handwriting recognition applied to the processing of bank

cheques, PhD thesis, Concordia University, 1995.

[29] Liu Z.-Q., Cai J., Buse R.; Handwriting Recognition, Soft Computing and Probabilistic

Approaches, Springer, 2003.

Received February 9, 2010

