
S C H E D A E I N F O R M A T I C A E

VOLUME 20 (2011) DOI 10.4467/20838476SI.11.004.0290

On the Mean Squared Error of Hierarchical Estimator

Stanis law Brodowski
Faculty of Physics, Astronomy, and Applied Computer Science,
Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

e-mail: stanislaw.brodowski@uj.edu.pl

Abstract. In this paper a new theorem about components of the mean squared

error of Hierarchical Estimator is presented. Hierarchical Estimator is a ma-

chine learning meta-algorithm that attempts to build, in an incremental and

hierarchical manner, a tree of relatively simple function estimators and com-

bine their results to achieve better accuracy than any of the individual ones.

The components of the error of a node of such a tree are: weighted mean of the

error of the estimator in a node and the errors of children, a non-positive term

that decreases below 0 if children responses on any example differ and a term

representing relative quality of an internal weighting function, which can be

conservatively kept at 0 if needed. Guidelines for achieving good results based

on the theorem are briefly discussed.

Keywords: Hierarchial Estimator, hierarchical model, regression, function ap-

proximation, classifier error.

1. Introduction

Machine learning is one of the classical topics in computer science [1, 2]. This paper
presents some theoretical findings about a machine learning solution concerned with
supervised learning called Hierarchical Estimator. That meta-algorithm, presented
in [3], arranges many simple, possibly relatively inaccurate, function estimators (ap-
proximators) into a tree structure and combines their results in an attempt to obtain
one more accurate.

The basic general task of the mentioned technique is to predict values of a random
variable Y with possible values in Y ⊂ Rr being presented with values of another

84

variable X (with possible values in X ⊂ Rp) and knowing some set (or series)
of values of X paired with values of Y called training set D = {(x(k), y(k)), k ∈
{1 . . . |D|},∀ k : x(k) ∈ X , y(k) ∈ Y}. This may be done by the approximating
function f : X −→ Y, such that:

Y = f(X) + ε, (1)

where ε is some error variable of certain properties (e.g. having 0 mean).

Because joint probability PX,Y (so also ε) is not available, usually minimizing of
a loss function, e.g. squared loss over D, is attempted instead [4].

As mentioned above, the main task is prediction, so working on examples not
being in the training set is required. If a solution works well only on the training
set, but poorly on unseen examples, it is described as having low generalization.
If the technique that is used is parametric, i.e. first some model is selected and
then parameters optimized, low generalization is often a result of selecting a too
complicated model [5, 6, 7].

1.1. Similar solutions

Hierarchical Estimator attempts to combine many less accurate estimators into more
accurate one, so it is loosely related to the Theory of Weak Learnability [8]. Its
execution may be seen as building a problem model in an incremental manner –
starting from a simple one and increasing complexity. Because some parts of it
guide the creation and working of others, it may be considered hierarchical. It
creates a tree structure that is automatically adapted to the problem being learned,
so its similarity to well known AdaBoost [9] is at most moderate. Another difference
is that while original AdaBoost sets the weight of component models for all examples,
Hierarchical Estimator assigns different weights to the experts based on the example
being evaluated. This makes it more similar to Hierarchical Mixture of Experts
(see [10]), but its operation differs significantly, even when constructive algorithms
like [11] are considered. For example, HME has expert nodes in leaf nodes, while
Hierarchical Estimator has them in all nodes and they all solve some subproblem of
the original problem. The outputs of internal nodes can be used both for evaluating
the result and, after additional processing and possibly including other variables, for
weighting results of component estimators. This also constitutes the most significant
of many differences between Hierarchical Estimator and regression trees M5 [12].

Probably the most similar solution to Hierarchical Estimator is Hierarchical Clas-
sifier [13], based on similar premises. Its details are strongly connected to the classi-
fication task though and that forces many differences [3]. Hierarchical Estimator is
designed for predicting continuously-valued number or vector outputs, so its scope
is different than that of Hierarchical Classifier. The meta-algorithm nature of Hier-
archical Estimator is also more explicit than in the case of Hierarchical Classifier.

85

1.2. Hierarchical Estimator

1.2.1. Basic definitions

In a very general sense, Hierarchical Estimator is a function HE : X −→ Y, that
uses a tree structure where node indices are from some index set I. Let N(i) be the
number of children (possibly 0) of the valid tree node with index i (called for the
sake of brevity “node i”).

Two functions are assigned to each valid node [3]:

1. a function estimator (approximator) gi : X −→ Y that solves some subproblem
of the original problem, in [3] simple neural networks are used for this task,

2. competence function Ci : {0, . . . , N(i)} × X −→ [0, 1] which values are used
as weights for results of children nodes and the result of the estimator in node i
when the value of the estimator for a given example is calculated, as described
in Eq. (2).

We assign to each child a number among its siblings. P : I × N → I is the
function that returns the global node index of a child based on the parent’s index
and that child number, i.e. P (i, j) gives the index of the j-th child of node i.

Definition 1 (Hierarchical Estimator node response). The recursive formula for
retrieving response of some node i on k-th example is [3]:

g̃i(x
(k)) =

N(i)∑
j=1

g̃P (i,j)(x
(k)) · Ci(j, x

(k)) + Ci(0, x
(k)) · gi(x(k)), (2)

where
N(i)∑
j=0

Ci(j, x
(k)) = 1. (3)

Definition 2 (Hierarchical Estimator response). The Hierarchical Estimator re-
sponse for a given example is the response of the root (its index denoted here as
r):

HE(x) = g̃r(x). (4)

For a leaf Ci(0, x
(k)) = 1 and g̃i(x

(k)) = gi(x
(k)).

A more compact version of the definition arises when we identify the result of the
estimator in the given node gi(x

(k)) with a result of a “virtual” zeroth child g̃P (i,0):

g̃i(x
(k)) =

N(i)∑
j=0

g̃P (i,j)(x
(k)) · Ci(j, x

(k)). (5)

When aggregating the result, an example is first propagated down the tree start-
ing from the root. Weights are proposed for a given example and each child node

86

by function C and only those children that achieved a non-zero value are used. This
means that the example is not propagated through the whole tree, but only certain
paths and branches. The propagation along a given path stops if it reaches a node
in which Ci(0, x

(k)) = 1, usually, but not necessarily, a leaf node.

It is very important that function C depends on the example being evaluated.
Therefore, although for any given example the response of Hierarchical Estimator is
a weighted mean of the response of some nodes, the whole Hierarchical Estimator is
not a linear combination of the estimators in the nodes.

1.2.2. Useful terms – competence

In the discussion about Hierarchical Estimator two more definitions will be very
useful [3]:

Definition 3 (Competence area). A competence area is the set of all feature vectors
that a given node may possibly be required to evaluate.

Definition 4 (Competence set). A competence set contains all examples from
a given set (also if that set is only known from the context of the term use) that
fall into the competence area of the node.

An example can fall into the competence set or competence area of a node if this
is a valid feature vector and the node is root, or if for some given set S (a set of
all possible vectors for the competence area) and the given node being a jth child
of node i, the competence function from node i is non-zero. In the latter case the
competence set is designated as SP (i,j) and follows:

SP (i,j) = {(x(k), y(k))|(x(k), y(k)) ∈ S ∧ Ci(j, x
(k)) > 0}. (6)

This can be also applied to “virtual” child 0.

1.2.3. Learning

The whole structure of Hierarchical Estimator is found while learning from examples,
so at least a brief description of the learning algorithm is needed for full understand-
ing the consequences of theoretical findings described in this article.

The procedure of learning Hierarchical Estimator on a training set D is:

1. Create a root node and make D its training set.

2. Build a function estimator (possibly simple) in the processed node (later called
node i).

87

3. Compute E(Si, gi) – the mean squared error or some other error measure –
for the given node and its competence set (which is not necessarily identical
to training set Di). If it is smaller than some preset value (“the goal”) stop
the algorithm for this branch. If, on the other hand, this error its greater than
that of its parent (on the same set), stop the algorithm for this branch, but
also delete this node.

4. If the solution is becoming too complex with respect to some preset parameter
(usually maximum tree depth) stop the algorithm (for this branch). This
condition is placed to limit the learning time.

5. Build

(a) Training sets for the children nodes {DP (i,1) . . .DP (i,N(i))} (N(i) also
needs to be found). This is usually done by creating a function Ui, such
that (x(k), y(k)) ∈ DP (i,j) ⇔ Ui(j, x

(k), y(k)) > 0. Because competence
sets generally should overlap (as indicated in [3]) training sets usually
also will.

(b) Competence function Ci.

As these tasks are closely related, they are usually performed together [3].

6. Run this algorithm for the children of the given node from point 2.

In [3], the creation of competence function C and dividing the training set is based
primarily on the responses of the estimator in the node. Usually it involves some
form of fuzzy clustering e.g. Fuzzy C-Means [14] with the cluster number selection
technique, described in [15]. For example, in the simplest, but not very effective form,
outputs of the estimator in the node are fuzzy-clustered, each cluster constitutes one
training set for a child and the competence function value is the membership of the
given example in the given cluster. In one of the more sophisticated methods, both
outputs of the estimator in the node and true values are clustered by means of fuzzy
clustering. Then a corellation matrix is made between clusters in estimator outputs
and clusters in true values. Finally, the rows of such matrix are clustered. The
competence function is based on finding the memberships of a given example in
each row, by using memberships of the example in response clusters, the corellation
matrix and a chosen set of fuzzy operators, and then combining this information,
again using fuzzy operators, with the memberships of each row in final clusters. The
training sets are found in a similar way, but information about true values is also
used. Paper [3] presents this method in detail and in two variants as well as one
other method.

It should be mentioned that because the solution presented in [3] uses Artificial
Neural Networks as estimators in the nodes, the data given as their input should be
adequatly prepared, normalized among others. This is sometimes not a trivial task
[16, 17] though usually standard normalization procedures are used.

88

1.2.4. Details

As it can be seen from definitions above, certain important details have to be deter-
mined separately. This concerns not only the selection of estimators in nodes (like
in many other solutions, e.g. AdaBoost) but also the exact form of the competence
function and creating training sets for successor nodes. Several versions of such de-
tails are described in [3] and their performance evaluated on several datasets. They
are inspired by the theorems cited in Section 2.2. and their proofs.

2. The error structure of Hierarchical Estimator

2.1. Preliminary notions

In this section, several notions will be used that were not explained above, because
their scope is more limited. For convenience they are grouped here. Most of them
appear in a similar form as in [3].

→ S = {(x(k), y(k))|k = 1, . . . , |S|} – is used for a set of examples on which the
estimator (or a given node) is evaluated. |S| is the size of that set. Please
recall that each x(k) ∈ X ⊂ Rp, y(k) ∈ Y ⊂ Rr

→ |SP (i,j)| is the size of the set SP (i,j), a competence set of j-th child of node i
within set S.

→ e((x(k), y(k)), g) – a squared error of estimator g on example (x(k), y(k))

e((x(k), y(k)), g) =

r∑
l=1

(y
(k)
l − g(x(k))l)

2. (7)

This notation can be shortened as in:

e(i,j)(k) = e((x(k), y(k)), gP (i,j)), (8)

ẽ(i,j)(k) = e((x(k), y(k)), g̃P (i,j)), (9)

e(i)(k) = e((x(k), y(k)), gi), (10)

→ ηi,j(k) – a short way for denoting the difference between the target function
value on k-th example of a given set and the result of j-th child of node i for
this example;

ηi,j(k) = gP (i,j)(x
(k))− y(k), x(k) ∈ SP (i,j) ,

η̃i,j(k) = g̃P (i,j)(x
(k))− y(k), x(k) ∈ SP (i,j). (11)

89

The error function can be easily created from η:

ẽ(i,j)(k) =
r∑

l=1

η̃i,j(k)2l . (12)

→ E(S, g) – a mean squared error of estimator g on the set S

E(S, g) =
1

|S|

|S|∑
k=1

e((x(k), y(k)), g). (13)

→ 1Ci is a characteristic (indicator) function of competence set (or area)

1Ci
(j, x(k)) =

{
1, Ci(j, x

(k)) > 0
0, otherwise.

(14)

Note, that Ci multiplied by 1Ci
is still Ci.

→ nik is the number of such j for which Ci(j, x
(k)) > 0, so it is the number of

children actually used on a given example (possibly including “virtual” child
0).

→ nmax
i is its maximum on the whole set S: nmax

i = maxk:(x(k),y(k))∈S nik.

→ ni is used if nik is constant over all examples that are considered, so the k
index can be omitted.

2.2. Existing theorems about the error of Hierarchical Estimator

In [3] several facts were proved about the Hierarchical Estimator squared error. For
the purpose of this article the first of them is of most interest.

Theorem 1. For any node i in Hierarchical Estimator suppose that:

S is a competence set of node i,

for each example in set S, nik is constant:

∀k : (x(k), y(k)) ∈ S,
N(i)∑
j=0

1Ci(j, x
(k)) = ni, (15)

where ni > 0,

90

Ci fulfills

1

|S|

|S|∑
k=1

r∑
l=1

 ∑
j:Ci(j,x(k))>0

η̃i,j(k)l · Ci(j, x
(k))

2

≤ 1

|S|

|S|∑
k=1

r∑
l=1

 1

ni

∑
j:Ci(j,x(k))>0

η̃i,j(k)l

2

.

(16)

Then

E(S, g̃i) ≤ E(S, gi)−
N(i)∑
j=1

|SP (i,j)|
|S| · ni

(
E(SP (i,j), gi)− E(SP (i,j), g̃P (i,j))

)
. (17)

In other words, if we always use ni children for an example (or one less, but use the
estimator in a given node) and errors achieved when the given competence function
is used are no greater than if the same children were used, but weighted equally, the
error is no greater than the error of the estimator diminished by differences between
its error on competence sets of children and the children errors on that sets.

It is not a suprising result, but one of the corollaries proved in the article [3]
(Corollary 2) states that the final inequality can be easily made strict – it is enough
that the used children nodes have different errors on one example.

This theorem and its proof brought some more detailed information on what is
needed for the solution to work properly.

The assumption 15 about the constant number of used children is inconvenient
(though necessary for the given form of the theorem), so modified version of the
theorem was proved, exchanging it for another (considered weaker by the author)
[3]:

Theorem 2. Consider node i and example set S.
Here points (15) and (16) from Theorem 1 are replaced by:

1

|S|

|S|∑
k=1

r∑
l=1

 ∑
j:Ci(j,x(k))>0

(η̃i,j(k)l · Ci(j, x
(k))

2

≤ 1

|S|

|S|∑
k=1

r∑
l=1

 1

nmax
i

∑
j:Ci(j,x(k))>0∧j>0

η̃i,j(k)l
nmax
i − nik + 1

nmax
i

η̃i,0(k)l

2

. (18)

And

∀k : (x(k), y(k)) ∈ S , Ci(0, x
(k)) > 0, (19)

The conclusion is then

E(S, g̃i) ≤ E(S, gi)−
N(i)∑
j=1

|SP (i,j)|
|S| · nmax

i

(
E(SP (i,j), gi)− E(SP (i,j), g̃P (i,j))

)
. (20)

91

The assumption 15 about the constant number of used children is replaced by
a requirement that the estimator in a given (parent) node is always used (19). It
may be in many cases less restricting than that of the first theorem and possibly
also more technical, as we can use arbitrary small values of the competence function
for that node. The thesis changed accordingly and can be called somewhat weaker.
The sketch of the proof is also in [3], the technical details are in [18]. These two
theorems laid foundation for several corollaries, also proved in [3]. One of the most
important (apart from the one mentioned above, about strict inequality) states that
if the conditions of this theorem are met and each child node gives better average
results than its parent on the child’s competence set, then adding nodes to the tree
decreases the error on the respective set (on which the conditions are met).

Unfortunately, strictly meeting assumptions of those theorems is not easy on
examples that were not used for training. However, it was not established that those
are necessary conditions, just sufficient ones, so, for example, it is not perfectly clear
what really happens if one or more assumptions are not met. That is why a bit more
detailed analysis is attempted in this paper.

2.3. The new theorem concerning error components

The theorems from [3] mentioned several conditions sufficient for the solution to
work well and pointed at several places in which the inequality in Theorem 1 might
be made strict, but did not formally answer the question about performance of the
solution when not all conditions are perfectly met or how large the difference can
be.

The theorem presented below tries to formally shed some light on this. As
Theorem 1 was the basic one, the new theorem is a modification of that one.

Below is the additional notation, that was not needed for the previous theorems,
but is necessary now.

→ τ is the notation corresponding to the assumption given in (16) – the relative
quality condition on function Ci.

τ =
1

|S|

|S|∑
k=1

r∑
l=1

τkl,

where τkl is just the difference between the error on example k on the coor-
dinate l when the actual competence function C is used, and the error in the
case the same estimators would be used (as 1Ci

is nonzero if and only if Ci is
nonzero) for evaluation of that example, but the results were weighted equally,

τkl =

N(i)∑
j=0

η̃i,j(k)l · Ci(j, x
(k))

2

−

 1

ni

N(i)∑
j=0

η̃i,j(k)l · 1Ci
(j, x(k))

2

. (21)

92

→ The notation δ is used to describe one of the error components, its full meaning
will be better explained during the proof.

δ =
1

|S|

|S|∑
k=1

r∑
l=1

δkl

δkl =

N(i)∑
j=0

η̃i,j(k)l · 1Ci
(j, x(k)) · 1Ci

(j, x(k))

2

(22)

−

N(i)∑
j=0

η̃i,j(k)2l 1Ci
(j, x(k))2

N(i)∑
j=0

1Ci
(j, x(k))2

 .

According to the Cauchy-Schwarz inequality, δkl is never positive.

The new theorem is:

Theorem 3. For any node i in Hierarchical Estimator suppose that:

S is a competence set of node i.

As in Theorem1, for each example in set S, nik is constant:

∀k : (x(k), y(k)) ∈ S,
N(i)∑
j=0

1Ci
(j, x(k)) = ni, (23)

where ni > 0.

Then

E(S, g̃i) =
1

|S| · ni

N(i)∑
j=0

|SP (i,j)| · E(SP (i,j), g̃P (i,j)) + τ +
1

n2i
δ. (24)

The first term is not suprising – mean of errors of children weighted by sizes of
their competence sets within the main set, but there are two more. One that is never
positive (δ, it is usually negative) and another one, that corresponds to quality of
competence function C relative to a function that chooses the same estimators for
each example, but weights them equally (τ). This one can quite easily be kept 0.

Proof. The proof is analogical to that of Theorem 1. First, we take squared
error definitions (including Eq. (8) and (13)):

E(S, g̃i) =
1

|S|

|S|∑
k=1

r∑
l=1

(
g̃i(x

(k))l − y(k)l

)2
,

and apply the main equation for the response (2) to them:

E(S, g̃i) =
1

|S|

|S|∑
k=1

r∑
l=1

N(i)∑
j=0

(
g̃P (i,j)(x

(k))
)
l
· Ci(j, x

(k))

− y(k)l

2

93

As the sum of Ci(j, x
(k)) by definition (Eq. (3)) equals to 1 for each example, we can

expand the equation and then collapse with a convenient notation of η (see Eq. (11)):

E(S, g̃i) =
1

|S|

|S|∑
k=1

r∑
l=1

N(i)∑
j=0

(g̃P (i,j)(x
(k)))l · Ci(j, x

(k))−
N(i)∑
j=0

Ci(j, x
(k)) · y(k)l

2

=
1

|S|

|S|∑
k=1

r∑
l=1

N(i)∑
j=0

((g̃P (i,j)(x
(k)))l − y(k)l) · Ci(j, x

(k))

2

=
1

|S|

|S|∑
k=1

r∑
l=1

N(i)∑
j=0

η̃i,j(k)l · Ci(j, x
(k))

2

.

We can extract the term τ using its definition – Eq. (21):

E(S, g̃i) =
1

|S|

|S|∑
k=1

r∑
l=1

N(i)∑
j=0

η̃i,j(k)l · Ci(j, x
(k))

2

=
1

|S|

|S|∑
k=1

r∑
l=1

 1

ni

N(i)∑
j=0

η̃i,j(k)l · 1Ci(j, x
(k))

2

+ τkl

=

1

|S|

|S|∑
k=1

r∑
l=1

 1

ni

N(i)∑
j=0

η̃i,j(k)l · 1Ci(j, x
(k))

2

+ τ.

(25)

Because values 1C are 0 or 1, raising them to any power greater than 0 does not
change them:

E(S, g̃i) =
1

|S|

|S|∑
k=1

r∑
l=1

1

n2i

N(i)∑
j=0

η̃i,j(k)l · 1Ci
(j, x(k)) · 1Ci

(j, x(k))

2

+ τ. (26)

At this point we can apply notation δ (22)

E(S, g̃i) = (27)

=
1

|S|

|S|∑
k=1

r∑
l=1

1

n2i

N(i)∑
j=0

η̃i,j(k)2l · 1Ci(j, x
(k))2

N(i)∑
j=0

1Ci(j, x
(k))2

+ δkl

+ τ.

The fact that, according to the Cauchy-Schwarz inequality, δkl is never positive is
quite important here.

Assumption (23) requires that
∑N(i)

j=0 1Ci
(j, x(k)) =

∑N(i)
j=0 1Ci

(j, x(k))2 = ni. So
we can write:

E(S, g̃i) =
1

|S|

|S|∑
k=1

r∑
l=1

1

n2i

N(i)∑
j=0

η̃i,j(k)2l · 1Ci(j, x
(k))2

ni + δkl

+ τ, (28)

94

then extract δ, concurrently simplifying 1/n2i · ni to 1/ni

E(S, g̃i) =
1

|S|

|S|∑
k=1

r∑
l=1

1

ni

N(i)∑
j=0

η̃i,j(k)2l · 1Ci
(j, x(k))2

+ τ +
1

n2i
δ, (29)

then reorder sums and factors:

E(S, g̃i) =

N(i)∑
j=0

1

|S| · ni

|S|∑
k=1

1Ci(j, x
(k))2 ·

r∑
l=1

η̃i,j(k)2l + τ +
1

n2i
δ.

In this form it is easy to apply the definition of the squared error (9) and the
observation about η (12), remembering that raising 1C to a positive power does not
change it:

E(S, g̃i) =

N(i)∑
j=0

1

|S| · ni

|S|∑
k=1

1Ci(j, x
(k)) · ẽ(i,j)(k) + τ +

1

n2i
δ (30)

and use the fact that 1C is a characterstic function of SP (i,j) to apply Eq. (13)

E(S, g̃i) =
1

|S| · ni

N(i)∑
j=0

|SP (i,j)| · E(SP (i,j), g̃P (i,j)) + τ +
1

n2i
δ.

This ends the proof.
Analogically to Corollary 2 in [3], we can show that δ = 0 is in fact a rather

special case, so in most cases it is negative.

Corollary 1 (Of δ). δkl is zero only if all errors of used approximators are the
same: δkl = 0 =⇒ ∀j, o : 1Ci

(j, x(k)) > 0 ∧ 1Ci
(o, x(k)) > 0 η̃i,o(k)l = η̃i,j(k)l

Proof. Because non-positiveness of δkl (22) comes from the Cauchy-Schwarz
theorem, it could only be 0 if the two vectors for which it is applied were linearly
dependent. In the case of two real non-null vectors, one of them would have to
be identical to the second one, just scaled by some number. This should apply to

vectors
(
1Ci

(j, x(k)))
)j=N(i)

j=0
and

(
η̃i,j(k)l ·1Ci

(j, x(k))
)j=N(i)

j=0
, so each η̃i,j(k)l should

have the same value, which is the thesis of the corollary.

Change of the error in the node during adding a subtree

For assessing the plausibility of Hierarchical Estimator, the following observation,
based on Theorem 3, may be of use. If the assumptions of Theorem 3 hold, then:

E(S, g̃i)− E(S, gi) = −
N(i)∑
j=0

|SP (i,j)|
|S| · ni

(
E(SP (i,j), gi)− E(SP (i,j), g̃P (i,j))

)
+ τ +

1

n2i
δ.

(31)

95

That equation may be used to describe the difference of the error in the node with
(E(S, g̃i)) and without (E(S, gi)) the subtree rooted in it, in the manner similar to
the thesis of Theorem 3. One of the components of that difference (1/n2i · δ) is never
positive (see Eq. 22), and is negative if only children errors differ on some examples,
as indicated by Corollary 1. Another one (τ , a relative quality of the competence
function, Eq. 21) can be kept at 0 if needed. If the whole difference is negative, the
existence of the subtree decreases the solution error on the given set. Of course,
for this to happen, the remaining component, a mean of differences between the
mean errors of the estimator in the node and the mean errors of children of the node
(with their subtrees, if they have them) on the children competence sets, should not
cause increase greater than the decrease caused by τ + 1/n2

i · δ. On the training set,
this increase is guaranteed to be non-positive (see pt. 3 in the learning algorithm
in Sect. 1.2.3.). Keeping it low on unknown examples is one of the main concerns
when creating competence functions and dividing training set [3].

The proof begins with addition of the term E(S, gi) to both sides:

E(S, g̃i) = E(S, gi)−
N(i)∑
j=0

|SP (i,j)|
|S| · ni

(
E(SP (i,j), gi)− E(SP (i,j), g̃P (i,j))

)
+ τ +

1

n2i
δ.

Then, we can transform the left side according to Theorem 3 (Eq. 24), achieving:

1

|S| · ni

N(i)∑
j=0

|SP (i,j)| · E(SP (i,j), g̃P (i,j)) + τ +
1

n2i
δ =

= E(S, gi)−
N(i)∑
j=0

|SP (i,j)|
|S| · ni

(
E(SP (i,j), gi)− E(SP (i,j), g̃P (i,j))

)
+ τ +

1

n2i
δ .

(32)

Next we can subtract the term τ + 1
n2
i
δ from both sides and arrange the sums

differently on the right side:

1

|S| · ni

N(i)∑
j=0

|SP (i,j)| · E(SP (i,j), g̃P (i,j)) =

=

N(i)∑
j=0

|SP (i,j)|
|S| · ni

(E(SP (i,j), gi)−
(
E(SP (i,j), gi)− E(SP (i,j), g̃P (i,j))

)
)

=
1

|S|

N(i)∑
j=0

(
1

ni
· |SP (i,j)|E(SP (i,j), gi)

)

−
N(i)∑
j=0

|SP (i,j)|
|S| · ni

(
E(SP (i,j), gi)− E(SP (i,j), g̃P (i,j))

)
.

We just extracted another term that is on the right side of (31)

−
∑N(i)

j=0

|SP (i,j)|
|S| · ni

(
E(SP (i,j), gi)− E(SP (i,j), g̃P (i,j))

)
, so we can cancel it out of the

96

equation, which then achieves the form:

1

|S|

N(i)∑
j=0

(
1

ni
· |SP (i,j)|E(SP (i,j), gi)

)
= E(S, gi).

Again, we will transform the left side. As 1Ci
is a characteristic function of SP (i,j), we

can expand the mean squared error using definitions (10) and (13). Then rearrange
sums again:

1

|S|

N(i)∑
j=0

(
1

ni
· |SP (i,j)|E(SP (i,j), gi)

)
=

1

|S|

N(i)∑
j=0

 1

ni

|S|∑
k=1

e(i)(k) · 1Ci
(j, x(k))

=

1

|S|

|S|∑
k=1

 1

ni
· e(i)(k) ·

N(i)∑
j=0

1Ci
(j, x(k))

 .

Because the assumption (23):
∑N(i)

j=0 1Ci(j, x
(k)) = ni still holds, we may use the

definition of the mean square error (13) and get

1

|S|

|S|∑
k=1

 1

ni
· e(i)(k) ·

N(i)∑
j=0

1Ci
(j, x(k))

 =
1

|S|

|S|∑
k=1

(e(i)(k)) = E(S, gi).

So the Equation (31) is true.

Change of the error during tree growing.

The last observation will be described informally here, but the analogical corollary
with the more formal proof can be found in [3] (Corollaries 5 and 6). It concerns
a change of the error of the whole tree when a new subtree is added for a given
node. Obviously in such a case E(S, g̃i) changes from E(S, gi) to a different value,
as described by Eq. (31). This causes a change in one of the E(SP (u,j), g̃P (u,j)) of its
parent u, proportionally to the size of the competence set. The same thing happens
one level up and the change is propagated to the root and the whole estimator.

3. Discussion

The theorem proved in this article specifically gives the components of the mean
squared error for Hierarchical Estimator:

1. The error of the estimator in nodes E(S, gi), both in leaves (where they are
E(S, g̃i)) and internal nodes.

97

2. The relative quality of competence function τ . This quality is measured with
respect to the reference function that selects the same children as the assessed
one, but weights them equally (and has, by definition, τ = 0).

3. δ which is never positive and is negative if only children results differ on an
example, so usually reduces the error.

It requires the number of used estimators in a given node to be constant. This can
be easily forced by always using ni estimators that are considered best and possibly
giving some of them very low weights. However, this can influence the term τ , so
developing a theorem lifting the requirement seems to be urgent. A possible way to
do that may be to reuse the technique from Theorem 2 presented in [3].

Perhaps the most important conclusion that could be drawn from the theoretical
considerations above, especially Theorem 3 and Corollary 1, is that the mean squared
error of the whole will be lower than the weighted mean of errors of the involved
children nodes and estimator in the node if more than one of them are used and
they have non-identical errors. Though a similar conclusion may be drawn from
Theorems in [3] here it is described a bit more precisely. This decrease in the error
can be reinforced if the competence function is able to assign greater weights to the
children that give lower errors, but it is not necessary.

An improvement over the theoretical basis from [3] allows to draw the following
conclusion, stronger than before. According the observation from the end of the
previous section and other theorems, adding a subtree to a node in the existing tree
can lower the mean squared error of the whole Hierarchical Estimator even if we
are not able to assure that all children nodes have lower errors on their competence
sets than their parent, or that the competence function offers gain over the reference
function (τ close to 0). It is just enough that the loss on them does not exceed the
gain from δ. Theorems proved in [3] did not allow to state it so clearly.

Such a conclusion is significant because it is generally not easy to guarantee that
a child node has the lower error on examples that were not available during training.
Mostly because it is a difficult task for a competence function to assign the examples
to the right estimators, i.e. the ones that would made low errors on them. Failing to
do that increases the errors of the approximators that actually received the example.
Another, though maybe easier to avoid, problem is that in a given node there may
not be any function estimators (in children nor the approximator in the node) that
would perform well on a given example because of e.g. generalization problems.

Based on these conclusions, one may try to formulate practical guidelines for
construction of detailed solutions, in a manner similar to [3]. For example:

1. It would be good if the competence area represented a truly smaller and some-
what separated problem, i.e. if the child was able to achieve greater accuracy
without a significant threat of overfitting, increased learning time or a compe-
tence function assigning ”wrong” examples.

2. An example should be evaluated by more than one child (possibly including
”virtual”, the estimator in a given node) so that δ could be negative.

3. It is better if the children have different errors from each other on the given
example rather than similar, to make δ even lower.

98

4. Choosing the right children by the competence function seems to be a more
important task than assigning them exact weights, because the solution can
work well also if τ are 0 – all chosen children are weighted equally. Still,
negative average τ can decrease the error.

Unsurprisingly, those guidelines are very similar to those from [3]. Some of them
are approximated in [3] as a requirement that examples within one competence area
should be similar (guideline 1) while training sets should be rather dissimilar (1 and
3), and further considerations about what similarity measure to use follow.

An important trait of all error components found in the theorem described in
this article is that they can be directly measured during training and validating,
so it is possible to measure where the error comes from, at least to some degree.
Refinements of the solution could even automatically use such measures to improve
the solution performance.

4. References

[1] Bishop C.; Pattern recognition and machine learning, Springer, Berlin, Heidelberg, New
York, 2006.

[2] Hand D., Mannila H., Smyth P.; Principles of Data Mining, MIT Press, 2001.

[3] Brodowski S., Podolak I. T.; Hierarchical Estimator, Expert Systems with Applications,
38(10), 2011, pp. 12237–12248.

[4] Hastie T., Tibshirani R., Friedman J.; The Elements of Statistical Learning, Springer,
Berlin, Heidelberg, New York, 2001.

[5] Russell S. J., Norvig P.; Artificial Intelligence: A Modern Approach, Pearson Education,
2003.

[6] Christiani N., Shawe-Taylor J.; Support Vector Machines and other kernel based learning
methods, Cambridge University Press, 2000.

[7] Scholkopf B., Smola A.; Learning with kernels, MIT Press, Cambridge, 2002.

[8] Schapire R.; The Strength of Weak Learnability, Machine Learning, 5(2), 1990, pp. 197–
227.

[9] Freund Y., Schapire R.; A decision theoretic generalization of online learning and an
application to boosting, Journal of Computer and System Sciences, 55, 1997, pp. 119–139.

[10] Jordan M., Jacobs R.; Hierarchical mixtures of experts and the EM algorithm, Neural
Computation, 1994, pp. 181–214.

[11] Saito K., Nakano R.; A constructive learning algorithm for an HME, IEEE Interna-
tional Conference on Neural Networks, 3, 1996, pp. 1268–1273.

[12] Quinlan J.; Learning with continuous classes, Proceedings of the 5-th Australian Con-
ference on Artificial Intelligence, 1992, pp. 343–348.

[13] Podolak I.; Hierarchical classifier with overlapping class groups, Expert Systems with
Applications, 34(1), 2008, pp. 673–682.

99

[14] Pal N., Bezdek J.; On cluster validity for the fuzzy c-means model, IEEE Transactions
on Fuzzy Systems, 3(3), 1995, pp. 370–379.

[15] Brodowski S.; A Validity Criterion for Fuzzy Clustering, in: Jedrzejowicz P., Nguyen
N. T., Hoang K. (ed.), Computational Collective Integlligence – ICCCI 2011, Springer,
Berlin, Heidelberg, 2011.

[16] Bielecki A., Bielecka M., Chmielowiec A.; Input Signals Normalization in Kohonen
Neural Networks, Lecture Notes in Artificial Intelligence, 5097, 2008, pp. 3–10.

[17] Barszcz T., Bielecka M., Bielecki A., Wójcik M.; Wind turbines states classification by
a fuzzy-ART neural network with a stereographic projection as a signal normalization,
Lecture Notes in Computer Science, 6594, 2011, pp. 225–234.

[18] Brodowski S.; Adaptuja̧cy siȩ hierarchiczny aproksymator, Master’s thesis, Jagiellonian
University, 2007.

Received May 19, 2010

