Local homology and Serre categories
Choose format
RIS BIB ENDNOTELocal homology and Serre categories
Publication date: 17.12.2019
Universitatis Iagellonicae Acta Mathematica, 2019, Volume 56, pp. 7-14
https://doi.org/10.4467/20843828AM.19.001.12109Authors
Local homology and Serre categories
We show some results about local homology modules when they are in a Serre subcategory of the category of R-modules. For an ideal a of R, we also define the concept of the condition Ca on a Serre category, which seems dual to the condition Ca in Melkersson [1]. As a main result we show that for an Artinian R-module M and any Serre subcategory S of the category of R-modules and a non-negative integer s, HomR(R/a,Has (M)) ∈ S if Hai (M) ∈ S for all i > s.
1. Aghapournahr M., Melkersson L., Local cohomology and Serre subcategories, J. Algebra, 320 (2008), 1275–1287.
2. Asgharzadeh M., Tousi M., A unified approach to local cohomology modules using Serre classes, Canadian Math. Bull., 53(1) (2010), 1–10.
3. Brodmann M., Sharp R.Y., Local cohomology, an algebraic introduction with geometric applications, Cambridge Univ. Press, Cambridge, 1998.
4. Cuong N.T., Nam T.T., The I-adic completion and local homology for Artinian modules, Math. Proc. Camb. Philos. Soc., 131 (2001), 61–72.
5. Cuong N.T., Nam T. T., A local homology theory for linearly compact modules, J. Algebra, 319 (2008), 4712–4737.
6. Greenlees J.P.C., May J.P., Derived functors of I-adic completion and local homology, J. Algebra, 149 (1992), 438–453.
7. Grothendieck A., Local Cohomology, Springer-Verlag, Berlin, Tokyo, New York, 1967.
8. Hartshorne R., Affne duality and cofiniteness, Invent. Math., 9 (1970), 14–164.
9. Kirby D., Dimension and length for Artinian modules, Quart. J. Math., 41(2) (1990), 419–429.
10. Macdonald I.G., Duality over complete local rings, Topology, 1 (1962), 213–235.
11. Melkersson L., Schenzel P., The co-localization of an Artinian module, Proc. Edinburgh Math. Soc., 38 (1995), 121–131.
12. Nam T.T., Cosupport and coartinian modules, Algebra Colloq., 15(1) (2008), 83–96.
13. Nam T.T., Minimax modules, local homology and local cohomology, International Jornal of Mathematices., 26(12) (2015).
14. Roberts R.N., Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math., 26(3) (1975), 269–273.
15. Yassemi S., Coassociated primes, Comm. Algebra, 23(4) (1995), 1473–1498.
Information: Universitatis Iagellonicae Acta Mathematica, 2019, Volume 56, pp. 7-14
Article type: Original article
Department of Mathematics, Payam Noor University, Tehran, Iran
Department of Mathematics, Payam Noor University, Tehran, Iran
Published at: 17.12.2019
Received at: 30.09.2018
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Classification number:
Article corrections:
-Publication languages:
English