Algebra of operators affiliated with a finite type I von Neumann algebra
cytuj
pobierz pliki
RIS BIB ENDNOTE
Algebra of operators affiliated with a finite type I von Neumann algebra
Choose format
RIS BIB ENDNOTEAlgebra of operators affiliated with a finite type I von Neumann algebra
Publication date: 10.11.2016
Universitatis Iagellonicae Acta Mathematica, 2016, Volume 53, pp. 39-57
https://doi.org/10.4467/20843828AM.16.005.5377Authors
Algebra of operators affiliated with a finite type I von Neumann algebra
The aim of the paper is to prove that the ∗-algebra of all (closed densely defined linear) operators affiliated with a finite type I von Neumann algebra admits a unique center-valued trace, which turns out to be, in a sense, normal. It is also demonstrated that for no other von Neumann algebras similar constructions can be performed.
1. Berberian S. K., Trace and the regular ring of a finite AW*-algebra, Proc. Amer. Math. Soc., 80 (1980), 584-586.
2. Blackadar B., Operator Algebras. Theory of C-algebras and von Neumann algebras (Encyclopaedia of Mathematical Sciences, vol. 122: Operator Algebras and Non-Commutative Geometry III), Springer Verlag, Berlin-Heidelberg, 2006.
3. Effros E. G., The Borel space of von Neumann algebras on a separable Hilbert space, Pacific J. Math., 15 (1965), 1153-1164.
4. Effros E. G., Global structure in von Neumann algebras, Trans. Amer. Math. Soc., 121 (1966), 434-454.
5. Ernest J., Charting the operator terrain, Mem. Amer. Math. Soc., 171 (1976), 207 pp.
6. Kadison R. V., Algebras of unbounded functions and operators, Exposition. Math., 4 (1986), 3-33.
7. Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras. Volume II: Advanced Theory, Academic Press, Inc., Orlando-London, 1986.
8. Kaufman W. E., Representing a closed operator as a quotient of continuous operators, Proc. Amer. Math. Soc., 72 (1978), 531-534.
9. Liu Z., On some mathematical aspects of the Heisenberg relation, Sci. China, 54 (2011), 2427-2452.
10. Maharam D., On homogeneous measure algebras, Proc. Natl. Acad. Sci. USA, 28 (1942), 108-111.
11. Murray F., von Neumann J., On rings of operators, Ann. Math., 37 (1936), 116-229.
12. Nelson E., Notes on non-commutative integration, J. Funct. Anal., 15 (1974), 103-116.
13. Niemiec P., Unitary equivalence and decompositions of infinite systems of closed densely defined operators in Hilbert spaces, Dissertationes Math. (Rozprawy Mat.), 482 (2012), 1-106.
14. Rudin W., Functional Analysis, McGraw-Hill, Inc., New York, 1991.
15. Sait^o K., On the algebra of measurable operators for a general AW-algebra. II, T^ohoku Math. J., (2) 23 (1971), 525-534.
16. Sakai S., C-Algebras and W-Algebras, Springer-Verlag, Berlin, 1971.
17. Segal I.E., A Non-Commutative Extension of Abstract Integration, Ann. Math., 57 (1953), 401-457.
18. Segal I. E., Correction to the Paper A Non-Commutative Extension of Abstract Integration", Ann. Math., 58 (1953), 595-596.
19. Stone M. H., A general theory of spectra. I, Proc. Natl. Acad. Sci. USA, 26 (1940), 280-283.
20. Takesaki M., Theory of Operator Algebras I (Encyclopaedia of Mathematical Sciences, Volume 124), Springer-Verlag, Berlin-Heidelberg-New York, 2002.
21. Takesaki M., Theory of Operator Algebras II (Encyclopaedia of Mathematical Sciences, Volume 125), Springer-Verlag, Berlin-Heidelberg-New York, 2003.
22. Yeadon F. J., Convergence of measurable operators, Proc. Cambridge Phil. Soc., 74 (1973), 257-268.
Information: Universitatis Iagellonicae Acta Mathematica, 2016, Volume 53, pp. 39-57
Article type: Original article
Titles:
Algebra of operators affiliated with a finite type I von Neumann algebra
Algebra of operators affiliated with a finite type I von Neumann algebra
Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University
Faculty of Applied Mathematics AGH University of Science and Technology, Cracov
Published at: 10.11.2016
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 2186
Number of downloads: 1628