FAQ

A remark on Fejér and Mittag-Leffler theorems

Publication date: 09.12.2015

Universitatis Iagellonicae Acta Mathematica, 2015, Volume 52, pp. 23-28

https://doi.org/10.4467/20843828AM.15.003.3729

Authors

,
Marek Jarnicki
Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University
Contact with author
All publications →
Józef Siciak
Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University
Contact with author
All publications →

Download full text

Titles

A remark on Fejér and Mittag-Leffler theorems

Abstract

We  discuss some generalizations of  the  classical Fejer  and Mittag-Leffler  theorems to the case of several complex variables with  applications to the Shilov and Bergman boundaries.

References

Download references

1. Almer B., Sur quelques probl`emes de la th´eorie des fonctions analytiques de deux variables complexes, Ark. Math., 17 (1922), 1–70.

2. Borel E., Addition au m´emoire sur les s´eries divergentes, Ann. sci. de l’E´ .N.S., 16 (1899), 132–136.

3. Casadio-Tarabusi E., Trapani S., Envelopes of holomorphy of Hartogs and circular domains, Pacific J. Math., 149 (1991), 231–249.

4. Chirka G. M., Approximation by polynomials on star-like subsets of Cn (Russian), Mat. Zametki, 14 (1973), 55–60.

5. Downarowicz M., Analytic continuation of series of homogeneous polynomials of n complex variables, Univ. Iag. Acta Math., 17 (1975), 105–114.

6. Fuks B. A., Special chapters in the theory of analytic functions of several complex variables, Translations of Mathematical Monographs, 14, AMS, Providence, R. I., 1965.

7. Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.

8. Jarnicki M., Pflug P., Extension of Holomorphic Functions, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000.

9. Jarnicki M., Pflug P., A counterexample to a theorem of Bremermann on Shilov boundaries, Proc. Amer. Math. Soc., 143 (2015), 1675–1677.

10. Knopp K., Uber Polynomentwicklungen im Mittag-Lefflerschen Stern Durch Anwendung der Eulerschen Reihentransformation, Acta Math., 47 (1926), 313–335.

11. Kosiński L- ., Zwonek W., Proper holomorphic mappings vs. peak points and Shilov boundary, Ann. Polon. Math., 107 (2013), 97–108.

12. Mittag-Leffler G., Sur la repr´esentation analytique d’une branche uniforme d’une fonction monog`ene, Note 1–5, Acta Math., 23 (1900), 43–62; 24 (1901), 183–204; 24 (1901), 205–244; 26 (1902), 353–391; 29 (1905), 101–181.

Information

Information: Universitatis Iagellonicae Acta Mathematica, 2015, Volume 52, pp. 23-28

Article type: Original article

Authors

Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University

Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University

Published at: 09.12.2015

Article status: Open

Licence: None

Percentage share of authors:

Marek Jarnicki (Author) - 50%
Józef Siciak (Author) - 50%

Article corrections:

-

Publication languages:

English

View count: 2131

Number of downloads: 1275

<p>A remark on Fejér and Mittag-Leffler theorems</p>

A remark on Fejér and Mittag-Leffler theorems

cytuj

pobierz pliki

RIS BIB ENDNOTE