On the Ohsawa–Takegoshi extension theorem
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEOn the Ohsawa–Takegoshi extension theorem
Data publikacji: 05.06.2012
Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 53 - 61
https://doi.org/10.4467/20843828AM.12.003.1122Autorzy
On the Ohsawa–Takegoshi extension theorem
Motivated by a recent work by B.-Y. Chen we prove a new estimate for the ∂¯-operator, which easily implies the Ohsawa–Takegoshi extension theorem. We essentially only use the classical H¨ormander esti- mate. This method gives the same constant as the one recently obtained by Guan–Zhou–Zhu.
1. Berndtsson B., The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier, 46 (1996), 1083–1094.
2. Berndtsson B., Weighted estimates for the ∂¯-equation, Complex Analysis and Geometry, Columbus, Ohio, 1999, Ohio State Univ. Math. Res. Inst. Publ., 9, Walter de Gruyter, 2001, 43–57.
3. Błocki Z., A note on the H¨ormander, Donnelly–Fefferman, and Berndtsson L2 -estimates for the ∂¯-operator, Ann. Pol. Math., 84 (2004), 87–91.
4.Błocki Z., The Bergman metric and the pluricomplex Green function, Trans. Amer. Math. Soc., 357 (2005), 2613–2625.
5. B-locki Z., The complex Monge–Amp`ere operator in pluripotential theory, lecture notes, http://gamma.im.uj.edu.pl/~blocki.
6. B-locki Z., Some estimates for the Bergman kernel and metric in terms of logarithmic capacity, Nagoya Math. J., 185 (2007), 143–150.
7. B-locki Z., Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math.,
193 (2013). 149–158.
8. Chen B.-Y., A simple proof of the Ohsawa–Takegoshi extension theorem, arXiv: 1105.2430v1.
9. Dinew Z˙ ., The Ohsawa–Takegoshi extension theorem on some unbounded sets, Nagoya Math. J., 188 (2007), 19–30.
10. Donnelly H., Fefferman C., L2 -cohomology and index theorem for the Bergman metric, Ann. of Math., 118 (1983), 593–618.
11. Guan Q., Zhou X., Zhu L., On the Ohsawa–Takegoshi L2 extension theorem and the twisted Bochner–Kodaira identity, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 797–800.
12. H¨ormander L., L2 estimates and existence theorems for the ∂¯ operator, Acta Math., 113 (1965), 89–152.
13. Ohsawa T., Addendum to “On the Bergman kernel of hyperconvex domains”, Nagoya Math. J., 137 (1995), 145–148.
14. Ohsawa T., Takegoshi K., On the extension of L2 holomorphic functions, Math. Z., 195 (1987), 197–204.
15. Suita N., Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., 46 (1972), 212–217.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 53 - 61
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
On the Ohsawa–Takegoshi extension theorem
On the Ohsawa–Takegoshi extension theorem
Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Polska
Publikacja: 05.06.2012
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
Angielski