FAQ

On the Ohsawa–Takegoshi extension theorem

Data publikacji: 05.06.2012

Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 53 - 61

https://doi.org/10.4467/20843828AM.12.003.1122

Autorzy

Zbigniew Błocki
Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Polska
Wszystkie publikacje autora →

Tytuły

On the Ohsawa–Takegoshi extension theorem

Abstrakt

Motivated  by a recent  work  by B.-Y. Chen we prove  a new estimate for the ∂¯-operator, which easily implies the Ohsawa–Takegoshi extension theorem.  We essentially only use the classical H¨ormander esti- mate.  This method gives the same constant as the one recently obtained by Guan–Zhou–Zhu.

 

Bibliografia

1. Berndtsson B., The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier, 46 (1996), 1083–1094.

2. Berndtsson B., Weighted estimates for the ∂¯-equation, Complex Analysis and Geometry, Columbus, Ohio, 1999, Ohio State Univ. Math. Res. Inst. Publ., 9, Walter  de Gruyter, 2001, 43–57.

3. Błocki Z., A note on the H¨ormander, Donnelly–Fefferman, and Berndtsson L2 -estimates for the ∂¯-operator, Ann. Pol. Math., 84 (2004), 87–91.

4.Błocki   Z., The Bergman metric and the pluricomplex Green function, Trans. Amer. Math. Soc., 357 (2005), 2613–2625.

5. B-locki Z., The complex Monge–Amp`ere  operator in pluripotential  theory, lecture notes, http://gamma.im.uj.edu.pl/~blocki.

6. B-locki Z., Some estimates for the Bergman kernel and metric  in  terms of logarithmic capacity, Nagoya Math. J., 185 (2007), 143–150.

7. B-locki Z., Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math.,

193 (2013). 149–158.

8. Chen  B.-Y.,   A  simple  proof  of  the  Ohsawa–Takegoshi extension  theorem,  arXiv: 1105.2430v1.

9. Dinew Z˙ ., The Ohsawa–Takegoshi extension theorem on some unbounded sets, Nagoya Math. J., 188 (2007), 19–30.

10. Donnelly H., Fefferman C., L2 -cohomology and index theorem for the Bergman metric, Ann. of Math., 118 (1983), 593–618.

11. Guan Q., Zhou X.,  Zhu L.,  On the Ohsawa–Takegoshi  L2   extension theorem and the twisted Bochner–Kodaira identity, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 797–800.

12. H¨ormander L., L2   estimates and existence theorems for the ∂¯ operator, Acta Math., 113 (1965), 89–152.

13. Ohsawa T.,  Addendum to “On  the Bergman kernel of hyperconvex domains”,  Nagoya Math. J., 137 (1995), 145–148.

14. Ohsawa T., Takegoshi K., On the extension of L2   holomorphic functions, Math. Z., 195 (1987), 197–204.

15. Suita N., Capacities  and kernels on Riemann surfaces, Arch. Ration. Mech. Anal.,  46 (1972), 212–217.

Informacje

Informacje: Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 53 - 61

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Angielski:

On the Ohsawa–Takegoshi extension theorem

Polski:

On the Ohsawa–Takegoshi extension theorem

Autorzy

Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Polska

Publikacja: 05.06.2012

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Zbigniew Błocki (Autor) - 100%

Korekty artykułu:

-

Języki publikacji:

Angielski

Liczba wyświetleń: 1912

Liczba pobrań: 1225

<p> On the Ohsawa–Takegoshi extension theorem</p>