FAQ
Logo Agencji Bezpieczeństwa Wewnętrznego (ABW), Polska

Unmanned aerial vehicles as a source of threats to the state’s electricity supply infrastructure and the proposed methods of protecting this infrastructure

Data publikacji: 03.2022

Terroryzm – studia, analizy, prewencja, 2022, Numer 1 (1) , s. 320-349

https://doi.org/10.4467/27204383TER.22.012.15428

Autorzy

Jędrzej Łukasiewicz
Politechnika Poznańska, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań
https://orcid.org/0000-0002-7082-8511 Orcid
Wszystkie publikacje autora →

Tytuły

Unmanned aerial vehicles as a source of threats to the state’s electricity supply infrastructure and the proposed methods of protecting this infrastructure

Abstrakt

Unmanned aerial vehicles pose a threat to objects important to national security. Their versatility, resulting from the characteristics of individual types of aircraft, means that the scale of their use in attacks is virtually unlimited. The electricity supply system is extremely important for state security. Due to the vastness of transmission networks and a significant number of node points of these networks, the question should be asked to what extent this system is resistant to terrorist attacks, especially those carried out with the use of unmanned aerial vehicles. In this paper, the author analyses an attack consisting in causing a short circuit of the electrical system with the use of a copper wire suspended under an unmanned aerial vehicle. The implementation of the recommended protection methods described in the paper should lead to an increased level of safety of transmission networks.

Bibliografia

Pobierz bibliografię
Baldick R., Chowdhury B., Dobson I., Initial review of methods for cascading failure analysis in electric power transmission systems IEEE PES CAMS task force on understanding, prediction, mitigation and restoration of cascading failures, w: IEEE Power and Energy Society General Meeting – Conversion  and Delivery of Electrical Energy in the 21st Century, 2008.
Carter B., Mancini R. , Op Amps for Everyone, Burlington 2009.
Jaworski M., Szuba M., Analiza obciążeń napowietrznych linii najwyższych napięć w aspekcie wytwarzania pola magnetycznego (Eng. Load analysis of overhead high-voltage lines in terms of magnetic field generation ), „Przegląd Elektrotechniczny” 2015, no. 5, pp. 149–154.
Kapoor R. et al., UAV Navigation Using Signals of Opportunity in Urban Environments. An Overview of Existing Methods, 1st International Conference on Energy and Power, ICEP2016, 14–16 XII 2016, Melbourne, Australia.
Metzger F.B., An Assesment of Propeller Aircraft Noise Reduction Technology, ASA Contractor Report 198237, 1995.
Parfomak P.W., Physical Security of the U.S. Power Grid. High-Voltage Transformer Substations, Congressional Research Service, 17 VI 2014.
Preece W.H., On the Heating Effects of Electric Currents. No. II, „Proceedings of the Royal Society of London”1887–1888, vol. 43, no pagination.
Preece W.H., On the Heating Effects of Electric Currents. No. II, „Proceedings of the Royal Society of London”1887 1888, vol. 44, no pagination.
Standardowe Specyfikacje Funkcjonalne. Elektroenergetyczna automatyka zabezpieczeniowa, pomiary i układy obwodów wtórnych (Eng. Standard Functional Specifications. Electricity protection control, metering and secondary circuits), Warszawa 2010 (update 2012).
Stauffacher E.R., Short-time Current Carrying Capacity of Copper Wire, „General Electric Review”1928 r., vol. 31, no. 6, pp. 326–327.
Yuliang W. et al., Noise Reduction of UAV Using Biomimetic Propellers with Varied Morphologies Leading-edge Serration, „Journal of Bionic Engineering”2020, vol. 17, pp. 767–779.
Internet sources
Energetyka, dystrybucja, przesył (Eng. Energy, distribution, transmission), PTPiREE, http://ptpiree.pl/raporty/2021/raport_ptpiree_2021.pdf [accessed: 30 XI 2021].
Legal acts
Commission Implementing Regulation (EU) 2020/639 of 12 May 2020 amending Implementing Regulation (EU) 2019/947 as regards standard scenarios for operations within visual range or beyond visual range (OJ EU L 150, 13 V 2020, p. 1).
Commission Delegated Regulation (EU) 2020/1058 of 27 April 2020 amending Delegated Regulation (EU) 2019/945 as regards the introduction of two new classes of unmanned aircraft systems (OJ EU L 232, 20 VII 2020, p. 1).
Commission Implementing Regulation (EU) 2020/746 of 4 June 2020 amending Implementing Regulation (EU) 2019/947 as regards the postponement of the dates of application of certain measures in relation to the COVID-19 pandemic (OJ EU L 176, 5 June 2020, p. 13).
Commission Implementing Regulation (EU) 2019/947 of 24 May 2019 on rules and procedures for the operation of unmanned aerial vehicles (OJ EU L 152 of 11 VI 2019, p. 45).
Commission Delegated Regulation (EU) 2019/945 of 12 March 2019 on unmanned aerial systems and third-country operators of unmanned aerial systems (OJ EU L 152 of 11 VI 2019, p. 1).
Regulation (EU) 2018/1139 of the European Parliament and of the Council of 4 July 2018 on common rules in the field of civil aviation and establishing a European Union Agency for Aviation Safety and amending Regulations (EC) No 2111/2005, (EC) No 1008/2008, (EU) No 996/2010, (EU) No 376/2014 of the European Parliament and of the Council 2014/30/EU and 2014/53/EU and repealing Regulations (EC) No 552/2004 and (EC) No 216/2008 of the European Parliament and of the Council and Council Regulation (EEC) No 3922/91 (OJ EU L 212 of 22 VIII 2018, p. 1).
Act of 3 July 2002 Aviation Law (i.e. Journal of Laws of 2020, item 1970, as amended).
Act of 6 June 1997 - Penal Code (i.e.: Journal of Laws of 2021, item 2345, as amended).
Guideline No. 7 of the President of the Civil Aviation Authority of 9 June 2021 on how to conduct operations using unmanned aircraft systems in connection with the entry into force of the provisions of Commission Implementing Regulation (EU) No 2019/947 of 24 May 2019 on rules and procedures for the operation of unmanned aircraft (Official Journal of the Civil Aviation Authority of 2021, item 35).
Guideline No. 24 of the President of the Civil Aviation Office of 30 December 2020 on the designation of geographical zones for unmanned aircraft systems (Official Journal of the Civil Aviation Office of 2020, item 78).
Guidelines of the Commander-in-Chief of the Air Traffic Service of the Armed Forces of the Republic of Poland No. 6 of 17 September 2018 on detailing the rules for flights of flying models and unmanned aerial vehicles with MTOW not exceeding 25 kg in air traffic zones of military airports (MATZ) and controlled zones of military airports (MCTR), https://ssrlszrp.wp.mil.pl/u/Wytyczne_w_sprawie_wykonywania_lotow_przez_RPAS.pdf.

Informacje

Informacje: Terroryzm – studia, analizy, prewencja, 2022, Numer 1 (1) , s. 320-349

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Polski:

Unmanned aerial vehicles as a source of threats to the state’s electricity supply infrastructure and the proposed methods of protecting this infrastructure

Angielski:

Unmanned aerial vehicles as a source of threats to the state’s electricity supply infrastructure and the proposed methods of protecting this infrastructure

Autorzy

https://orcid.org/0000-0002-7082-8511

Jędrzej Łukasiewicz
Politechnika Poznańska, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań
https://orcid.org/0000-0002-7082-8511 Orcid
Wszystkie publikacje autora →

Politechnika Poznańska, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań

Publikacja: 03.2022

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Jędrzej Łukasiewicz (Autor) - 100%

Korekty artykułu:

-

Języki publikacji:

Angielski