Szybka i nieniszcząca identyfikacja sierści zwierzęcej za pomocą ATR-FTIR i chemometrii: model koncepcyjny do stosowania w dochodzeniu kryminalnym w przestępstwach dotyczących dzikiej fauny
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEData publikacji: 10.10.2024
Problems of Forensic Sciences (Z Zagadnień Nauk Sądowych), 2024, 138, s. 137 - 152
https://doi.org/10.4467/12307483PFS.24.009.20182Autorzy
A rapid and non-destructive identification of animal hairs using ATR-FTIR and chemometrics: aproof-of-concept for wildlife forensic applications
Wildlife crime is a significant threat to biodiversity and can have serious ecological, economic, and social impact. Skin, horns, claws, antlers, and virtually all parts of an animal’s body are utilized in illegal trade. Animal hair is invariably found as physical evidence in wildlife crimes pertaining to mammals. It is also found in wildlife crimes in the form of illegal artifacts, or as circumstantial evidence suggesting the involvement of crime against animals. DNA typing methods are widely applied for species identification but are sometimes unreliable when the sample is highly degraded or mixed with other items. Hair is commonly analysed by microscopic techniques; however, it lacks statistical confidence in identification when the sample size is small and the results are somewhat subjective in nature. Here, we investigate the role of attenuated total reflection Fourier transform-infrared (ATR-FTIR) spectroscopy in analysing the spectra obtained from the hair of two distant species of Indian blackbuck (Antilope cervicapra) and Hanuman langur (Semnopithecus entellus) in combination with a suitable chemometric model, i.e., PCA (principal component analysis) and PLS-DA (partial least squares discriminant analysis). This is an alternate non-destructive method for the distinction of the multiple spectra. PCA plot showed the grouping to some extent; however, PLS-DA analysis resulted in the correct segregation of both species. Additionally, this model was validated by 6 unknown hair samples of both species, resulting in a 100% accuracy. The model’s sensitivity and specificity were also tested and calculated to be 1. Hence, the potential of ATR-FTIR spectroscopy is demonstrated by its speed, non-destructive examination, and minimal or no sample preparation. It can complement the present microscopic and DNA-based techniques.
1. Manheim J, Doty KC, McLaughlin G, Lednev IK. Forensic hair differentiation using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Appl Spectrosc. 2016 Jul;70(7):1109-17. 10.1177/0003702816652321 asp.sagepub.com
2. Dehury S, Mishra UK, Hembram A, Sahoo N. Light and scanning electron microscopy analysis of hair samples of some wild animals for individual identification. J Entomol Zool Stud. 2019;7(6):900-4.
3. Ogden R, Linacre A. Wildlife forensic science: a review of genetic geographic origin assignment. Forensic Sci Int Genet. 2015 Sep 1;18:152-9. https://doi.org/10.1016/j.fsigen.2015.02.008
4. Rana AK, Kumar N. Current wildlife crime (Indian scenario): major challenges and prevention approaches. Biodivers Conserv. 2023 Apr;32(5):1473-91.10.1007/s10531-023-02577-z
5. Singh S. Over 1,000 pangolins poached and trafficked in India between 2018 and 2022. The Hindu. 2023 February 17. Retrieved from https://www.thehindu.com/scitech/energy-and-environment/over-1000-pangolins-trafficked-in-india-in-5-years/article66520621.ece#:~:text=They%20are%20poached%20mainly%20for,he%20was%20quoted%20as%20saying
6. Watson K. The top five animals that poachers are hunting into extinction. Global citizen. 2016. Retrieved May 20, 2023, from https://www.globalcitizen.org/en/content/most-poached-animals-worldenvironment-day/
7. Ahmed YA, Ali S, Ghallab A. Hair histology as a tool for forensic identification of some domestic animal species. EXCLI Journal. 2018;17:663. 10.17179/excli2018-1478
8. Vaishnav L, Parashar S, Kumar A, Sachdeva MP. A study on hair analysis of different Canidae breeds. Forensic Sci Int Rep. 2021 Jul 1;3:100169. https://doi.org/10.1016/j.fsir.2020.100169
9. Knecht L. The use of hair morphology in the identification of mammals. In: Huffman JE, Wallace JR, editors. Wildlife forensics: methods and applications. Chichester: John Wiley & Sons; 2011. p. 129-143. https://doi.org/10.1002/9781119953142.ch8
10. Rajaselin AA, Veeraraghavan VP, Arthanari AA, Gayathri R, Kavitha S, Selvaraj J, Dinesh Y. A comparative study of different animal hairs: A microscopic analysis. Journal of Advanced Pharmaceutical Technology & Research. 2022 Nov;13(Suppl 1):S117. 10.4103/japtr.japtr_256_22
11. Farag MR, Ghoniem MH, Abou-Hadeed AH, Dhama K. Forensic identification of some wild animal hair using light and scanning electron microscopy. Adv Anim Vet Sci. 2015;3(10):559-68. http://dx.doi.org/10.14737/journal.aavs/2015/3.10.559.568
12. Gharu J, Trivedi S. Hair cuticle scale patterns in hanuman langur (Semnopithecus entellus) and grey slender loris (Loris lydekkerianus). Biological Forum – An International Journal. 2013;5:11-15.
13. Taupin JM. Forensic hair morphology comparison – a dying art or junk science?. Sci Justice. 2004 Apr 1;44(2):95-100. 10.1016/s1355-0306(04)71695-0
14. Oien CT. Forensic hair comparison: background information for interpretation. 2009. https://archives.fbi.gov/archives/about-us/lab/forensic-science-communications/fsc/april2009/review/2009_04_review02.htm (accessed 15 May 2023).
15. Sharma CP, Sharma S, Rawat GS, Singh R. Rapid and non-destructive differentiation of Shahtoosh from Pashmina/Cashmere wool using ATR FT-IR spectroscopy. Sci Justice. 2022 May 1;62(3):349-57. https://doi.org/10.1016/j.scijus.2022.04.002
16. Espinoza EO, Baker BW, Moores TD, Voin D. Forensic identification of elephant and giraffe hair artifacts using HATR FTIR spectroscopy and discriminant analysis. Endanger Species Res. 2008 Sep 23;9(3):239-46. https://doi.org/10.3354/esr00125
17. Xu W, Xia J, Min S, Xiong Y. Fourier transform infrared spectroscopy and chemometrics for the discrimination of animal fur types. Spectrochim Acta A Mol Biomol Spectrosc. 2022 Jun 5;274:121034. https://doi.org/10.1016/j.saa.2022.121034
18. Gao H. Comparative study on the infrared spectra of straight guard hairs of leopard cat and golden cat. Agricultural Science and Technology. 2013 Nov 1;14(11):1683.
19. Guleria P, Thakar MK, Goyal SP. Differentiation of Galliformes feather samples for species identification using ATR-FTIR spectroscopy and chemometric techniques: application in wildlife forensics. Forensic Sci Int: Animals and Environments. 2023 Jun 9:100066. https://doi.org/10.1016/j.fsiae.2023.100066
20. Sharma A, Chauhan R, Kumar R, Mankotia P, Verma R, Sharma V. A rapid and non-destructive ATR-FTIR spectroscopy method supported by chemometrics for discriminating between facial creams and the classification into herbal and non-herbal brands. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Sep 5;258:119803. https://doi.org/10.1016/j.saa.2021.119803
21. Gautam R, Vanga S, Ariese F, Umapathy S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Techniques and Instrumentation. 2015 Dec;2:1-38. 10.1140/epjti/s40485-015-0018-6
22. Lee LC, Liong CY, Jemain AA. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst. 2018;143(15):3526-39. https://doi.org/10.1039/C8AN00599K
23. Arora T, Verma R, Kumar R, Chauhan R, Kumar B, Sharma V. Chemometrics based ATR-FTIR spectroscopy method for rapid and non-destructive discrimination between eyeliner and mascara traces. Microchem J. 2021 May 1;164:106080. https://doi.org/10.1016/j.microc.2021.106080
24. Pawani P. What is confusion matrix, accuracy, sensitivity, specificity, precision, recall? 2020. https://poojapawani.medium.com/what-is-confusion-matrix-accuracy-sensitivity-specificity-precision-recall-1091b4723714 (accessed 15 May 2023).
25. Bhatia D, Sharma CP, Sharma S, Singh R. Species discrimination from hair using ATR-FTIR spectroscopy: Application in wildlife forensics. Sci Justice. 2024 May 1;64(3):314-21. https://doi.org/10.1016/j.scijus.2024.04.002
26. Asri MN, Verma R, Ibrahim MH, Nor NA, Sharma V, Ismail D. On the discrimination between facial creams of different brands using Raman spectroscopy and partial least squares discriminant analysis for forensic application. Sci Justice. 2021 Nov 1;61(6):687-96. https://doi.org/10.1016/j.scijus.2021.08.006
27. Asri MN, Verma R, Mahat NA, Nor NA, Desa WN, Ismail D. Raman spectroscopy with self-organizing feature maps and partial least squares discriminant analysis for discrimination and source correspondence of red gel ink pens. Microchem J. 2022 Apr 1;175:107170. https://doi.org/10.1016/j.microc.2021.107170
28. Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017 Nov 3;13(11):e1005752. https://doi.org/10.1371/journal.pcbi.1005752
Informacje: Problems of Forensic Sciences (Z Zagadnień Nauk Sądowych), 2024, 138, s. 137 - 152
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Rashtriya Raksha University
Indie
Rashtriya Raksha University
Indie
Rashtriya Raksha University
Indie
Directorate of Forensic Services
Indie
Publikacja: 10.10.2024
Otrzymano: 11.03.2024
Zaakceptowano: 14.05.2024
Status artykułu: Otwarte
Licencja: CC BY-NC-ND
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
Angielski, Polski