FAQ

The hybrid sorption-compression refrigeration cycle control system

Data publikacji: 25.01.2016

Czasopismo Techniczne, 2015, Mechanika Zeszyt 1-M (6) 2015, s. 11-19

https://doi.org/10.4467/2353737XCT.15.266.4669

Autorzy

,
Piotr Cyklis
Faculty of Mechanical Engineering, Cracow University of Technology
Wszystkie publikacje autora →
Roman Duda
Institute of Mathematics, University of Wrocław, Poland
Cracow University of Technology, Department of Thermal Power Engineering, Faculty of Mechanical Engineering
Wszystkie publikacje autora →

Tytuły

The hybrid sorption-compression refrigeration cycle control system

Abstrakt

The requirements for environmentally friendly refrigerants promote the application of both CO2 and water as working fluids. Both solutions have disadvantages resulting from the high temperature limit for CO2 and the low temperature limit for water. This can be avoided by the application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption cycle which is used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low-temperature renewable heat source such as solar collectors or waste heat sources. This solution has been developed by the authors of this paper and has not been reported in any other literature source. The different ambient conditions over the course of the year require specially designed controlprocedures and the automation system. The algorithm has to control positive and negative heat sources operation, valve actions, pumps, fans and compressor operation. In the control algorithm, the ambient temperature and solar conditions or other waste heat sources have to be introduced as control parameters, optimised to achieve maximum efficiency of the whole system. The refrigeration effect as a parameter has to be considered both for the refrigeration capacity as well as the CO2 evaporation temperature.

Bibliografia

[1] Cecchinato L., Corradi M., Transcritical carbon dioxide small commercial cooling applications analysis, Elsevier International Journal of Refrigeration, No. 34, 2012, pp. 50-62.

[2] da Silva A., Pedone Bandarra Filho E., Heleno Pontes Antunes A., Comparison of a R744 cascade refrigeration system with R404A and R22 conventional systems for supermarkets, Elsevier Applied Thermal Engineering, No. 41, 2012, pp. 30-35.

[3] Getu H.M., Bansal P.K., Thermodynamic analysis of an R744-R717 cascade refrigeration system, Elsevier International Journal of Refrigeration, No. 31, 2008, pp. 45-54.

[4] Pearson A., Carbon dioxide-new uses for an old refrigerant, Elsevier International Journal of Refrigeration, No. 28, 2005, pp. 1140-1148.

[5] Ge Y.T., Tassou S.A., Control optimisation of CO2 cycles for medium temperature retail food refrigeration systems, Elsevier International Journal of Refrigeration, No. 32, 2009, pp. 1376-1388.

[6] Girottoa S., Minettoa S., Neksa P., Commercial refrigeration system using CO2 as the refrigerant, Elsevier International Journal of Refrigeration, No. 27, 2004, pp. 717-723.

[7] Desideri U., Proietti S., Sdringola P., Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air-conditioning applications, Elsevier Applied Energy, No. 86, 2009, pp. 1376-1386.

[8] Cimsit C., Ozturk I.T., Analysis of compressioneabsorption cascade refrigeration cycles, Elsevier Applied Thermal Engineering, No. 40, 2012, pp. 311-317.

[9] Fernandez-Seara J., Sieres J., Vazquez M., Compression-absorption cascade refrigeration system, Elsevier Applied Thermal Engineering, No. 26, 2006, pp. 502-512.

[10] Bhattacharyya S., Garai A., Sarkar J., Thermodynamic analysis and optimization of a novel N2O‒CO2 cascade system for refrigeration and heating, Elsevier International Journal of Refrigeration, No. 32, 2009, pp. 1077-1084.

[11] Wang L., Ma A., Tan Y., Cui X., Cui H., Study on Solar-Assisted Cascade Refrigeration System, Elsevier Energy Procedia, No.16, pp. 1503-1509.

[12] Labus J., Bruno J.C., Coronas A., Performance analysis of small capacity absorption chillers by using different modeling methods, Elsevier Applied Thermal Engineering, No. 58, 2013, pp. 305-313.

[13] Sekret R., Turski M., Research on an adsorption cooling system supplied by solar energy, Elsevier Energy and Buildings, No. 51, 2012, pp. 15-20.

[14] Cyklis P., Kantor R., Concept of hybrid adsorption-compression refrigeration system, Zeszyty Naukowe Politechniki Poznanskiej, 2011.

[15] Cyklis P., Kantor R., Górski B., Ryncarz T., Hybrydowe sorpcyjno-sprężarkowe systemy ziębnicze. Część III – Wyniki badań systemu, Technika Chłodnicza i Klimatyzacyjna, No. 1, 2013, p. 203.

Informacje

Informacje: Czasopismo Techniczne, 2015, Mechanika Zeszyt 1-M (6) 2015, s. 11-19

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Polski:

The hybrid sorption-compression refrigeration cycle control system

Angielski:

The hybrid sorption-compression refrigeration cycle control system

Autorzy

Faculty of Mechanical Engineering, Cracow University of Technology

Institute of Mathematics, University of Wrocław, Poland

Cracow University of Technology, Department of Thermal Power Engineering, Faculty of Mechanical Engineering

Publikacja: 25.01.2016

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Piotr Cyklis (Autor) - 50%
Roman Duda (Autor) - 50%

Korekty artykułu:

-

Języki publikacji:

Angielski