Zmienność mikrobiomu jamy ustnej w określaniu czasu zgonu: standardy i rekomendacje badawcze
Wybierz format
RIS BIB ENDNOTEData publikacji: 04.06.2025
Archiwum Medycyny Sądowej i Kryminologii, 2025, Vol. 75 (1), s. 48-55
https://doi.org/10.4467/16891716AMSIK.25.004.21539Autorzy
Oral microbiome dynamics in Postmortem Interval estimation: research standards and guidelines
Determination of the postmortem interval (PMI) is a crucial aspect of forensic investigations as it verifies an alibi or narrows down suspects. Nevertheless, PMI estimation remains one of the most challenging problems in forensic science. Currently used methods are influenced by various biotic and abiotic factors affecting decomposition. Thus, determining the time of death largely depends on the skills and experience of the forensic experts. Consequently, currently used procedures are prone to inaccuracies. Lately, gut microbiome analysis has proven useful in determining the time of death. Furthermore, emerging evidence indicates that profiling the oral microbiome may also provide valuable insights into PMI estimation. In this review, we examine published reports on oral microbiome and highlight the methodological limitations that diminish their scientific value. Therefore, we summarize the research standards and guidelines for oral microbiome studies to enhance the accuracy and reproducibility of PMI studies. Consequently, standardization of this type of research could lead to the development of innovative approaches that may be implemented into routine forensic genetics practice.
Henssge C. Death time estimation in case work I. The rectal temperature time of death nomogram. Forensic Sci Int. 1988; 38, 209-236
Madea B. Methods for determining time of death. Forensic Sci Med Pathol 2016, 12, 451-485
Kaliszan M., Hauser R., Kernbach-Wighton G. Estimation of the time of death based on the assessment of post mortem processes with emphasis on body cooling. Legal Medicine 2009, 11, 111-117
Dell’Aquila M., De Matteis A., Scatena A., Costantino A., Camporeale M.C., De Filippis A. Estimation of the time of death: where we are now? Clin Ter. 2021, 172: 109-112
Buchan M.J.; Anderson G.S. Time Since Death: A Review of the Current Status of Methods used in the Later Postmortem Interval. Canadian Society of Forensic Science Journal 2001, 34, 1-22
Cieśla J, Skrobisz J, Niciński B, Kloc M, Mazur K, Pałasz A, Javan GT, Tomsia M. The smell of death. State-of-the-art and future research directions. Front Microbiol. 2023, 14, 1260869
Amendt J.; Krettek R.; Zehner R. Forensic entomology. Naturwissenschaften 2004; 91, 51-65
Henssge, C. Decomposition and postmortem changes of the human body. Forensic Sci. Int. 1993, 61, 75-86
Payne J.A. A summer carrion study of the baby pig Sus Scrofa Linnaeus. Ecol 1965; 46, 592-602
Wójcik J, Tomsia M, Drzewiecki A, Skowronek R. Thanatomicrobiome – State Of The Art And Future Directions. Advancements of Microbiology 2021, 60: 21-29
Regueira-Iglesias A, Balsa-Castro C, Blanco-Pintos T, Tomás I. Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. Mol Oral Microbiol. 2023; 38: 347-399
Schmidt C. S.; Amend J. P. The microbiology of decomposition: a review. Nat. Rev. Microbiol., 2009; 7, 493-504
DeBruyn J.M.; Hauther K.A. Postmortem succession of gut microbial communities in deceased human subjects. PeerJ., 2017; 5, e3437
Hyde E.R.; Haarmann D.P.; Lynne A.M.; Bucheli S.R.; Petrosino J.F. The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One., 2013; 8, e77733
Guo J.; Fu X.; Liao H.; Hu Z.; Long L.; Yan W.; Ding Y.; Zha L.; Guo Y.; Yan J.; Chang Y.; Cai J. Potential use of bacterial community succession for estimating post-mortem interval as revealed by high-throughput sequencing. Sci Rep. 2016; 6, 24197
Carter DO, Yellowlees D, Tibbett M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften. 2007; 94, 12-24
Johnson J.S.; Spakowicz D.J.; Hong B.Y.; Petersen L.M.; Demkowicz P.; Chen L.; Leopold S.R.; Hanson B.M.; Agresta H.O.; Gerstein M.; Sodergren
E.; Weinstock G.M. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019; 10, 5029
Buetas E.; Jordán-López M.; López-Roldán A.; D’Auria G.; Martínez-Priego L.; De Marco G.; Carda-Diéguez M.; Mira A. Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples. BMC Genomics. 2024; 25, 310
López-Aladid R.; Fernández-Barat L.; Alcaraz-Serrano V.; Bueno-Freire L.; Vázquez N.; Pastor-Ibáñez R.; Palomeque A.; Oscanoa P.; Torres A. Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples. Sci Rep. 2023; 13, 3974
Ashe E.C.; Comeau A.M.; Zejdlik K.; O’Connell S.P. Characterization of Bacterial Community Dynamics of the Human Mouth Throughout Decomposition via Metagenomic, Metatranscriptomic, and Culturing Techniques. Front Microbiol. 2021; 12, 689493
Adserias-Garriga J.; Quijada N.M.; Hernandez M.; Rodríguez Lázaro D.; Steadman D.;.Garcia-Gil L.J. Dynamics of the oral microbiota as a tool to estimate time since death. Mol Oral Microbiol. 2017; 32, 511-516
Javan G.T.; Finley S.J.; Can I.; Wilkinson J.E.; Hanson J.D.; Tarone A.M. Human Thanatomicrobiome Succession and Time Since Death. Sci Rep. 2016; 6 ,29598
Ogbanga N.; Nelson A.; Gino S.; Wescott D.J.; Mickleburgh H.L.; Gocha T.P.; Procopio N. The impact of freezing on the post-mortem human microbiome. Front. Ecol. Evol. 2023; 11; 1151001
Pechal J.L.; Schmidt C.J.; Jordan H.R.; Benbow M.E. Frozen: Thawing and Its Effect on the Postmortem Microbiome in Two Pediatric Cases. J Forensic Sci. 2017; 62; 1399-1405
Pittner S.; Bugelli V.; Benbow M.E.; Ehrenfellner B.; Zissler A.; Campobasso C.P.; Oostra R.J.; Aalders M.C.G.; Zehner R.; Lutz L.; Monticelli F.C.; Staufer C.; Helm K.; Pinchi V.; Receveur J.P.; Geißenberger J.; Steinbacher P.; Amendt J. The applicability of forensic time since death estimation methods for buried bodies.in advanced decomposition stages. PLoS One. 2020; 15, e0243395
Hyde E.R.; Haarmann D.P.; Lynne A.M.; Bucheli S.R.; Petrosino J.F. The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One. 2013; 8; e77733
Huang X.; Zeng J.; Li S.; Chen J.; Wang H.; Li C.; Zhang S. 16S rRNA, metagenomics and 2bRAD-M sequencing to decode human thanatomicrobiome. Sci Data. 2024; 11; 736
Gupta V.K.; Paul S.; Dutta C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front Microbiol. 2017; 8; 1162
Cho H.W.; Eom Y.B. Forensic Analysis of Human Microbiome in Skin and Body Fluids Based on Geographic Location. Front Cell Infect Microbiol. 2021; 11; 695191
Govender P.; Ghai M. Population-specific differences in the human microbiome: Factors defining the diversity. Gene. 2025; 933; 148923
Mark Welch J.L.; Rossetti B.J.; Rieken C.W.; Dewhirst F.E.; Borisy G.G. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A. 2016; 113; E791-800
Mark Welch J.L.; Dewhirst F.E.; Borisy G.G. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu Rev Microbiol. 2019; 73; 335-358
Baker J.L.; Mark Welch J.L.; Kauffman K.M.; McLean J.S.; He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol. 2024; 22; 89-104
Amos G.C.A.; Logan A.; Anwar S.; Fritzsche M.; Mate R.; Bleazard T., Rijpkema S. Developing standards for the microbiome field. Microbiome. 2020; 8; 98
Qian X.B.; Chen T.; Xu Y.P.; Chen L.; Sun F.X.; Lu M.P.; Liu Y.X. A guide to human microbiome research: study design, sample collection, and bioinformatics analysis. Chin Med J (Engl). 2020; 133; 1844-1855
Zaura E, Pappalardo VY, Buijs MJ, Volgenant CMC, Brandt BW. Optimizing the quality of clinical studies on oral microbiome: A practical guide for planning, performing, and reporting. Periodontol 2000. 2021; 85; 210-236
Mirzayi C.; Renson A.; Genomic Standards Consortium; Massive Analysis and Quality Control Society; Zohra F.; Elsafoury S.; Geistlinger L.; Kasselman L.J.; Eckenrode K.; van de Wijgert J.; Loughman A.; Marques F.Z.; MacIntyre D.A.; Arumugam M.; Azhar R.; Beghini F.; Bergstrom K.; Bhatt A.; Bisanz J.E.; Braun J.; Bravo H.C.; Buck G.A.; Bushman F.; Casero D.; Clarke G.; Collado M.C.; Cotter P.D.; Cryan J.F.; Demmer R.T.; Devkota S.; Elinav E.; Escobar J.S.; Fettweis J.; Finn R.D.; Fodor A.A.; Forslund S.; Franke A.; Furlanello C.; Gilbert J.; Grice E.; Haibe-Kains B.; Handley S.; Herd P.; Holmes S.; Jacobs J..P.; Karstens L.; Knight R.; Knights D.; Koren O.; Kwon D.S.; Langille M.; Lindsay B.; McGovern D.; McHardy A.C.; McWeeney S.; Mueller N.T.; Nezi L.; Olm M.; Palm N.; Pasolli E.; Raes J.; Redinbo MR.; Rühlemann M.; Balfour Sartor R.; Schloss PD.; Schriml L.; Segal E.; Shardell M.; Sharpton T.; Smirnova E.; Sokol H.; Sonnenburg J.L.; Srinivasan S.; Thingholm L.B.; Turnbaugh P.J.; Upadhyay V.; Walls R.L.; Wilmes P.; Yamada T.; Zeller G.; Zhang M.; Zhao N.; Zhao L.; Bao W.; Culhane A.; Devanarayan V.; Dopazo J.; Fan X.; Fischer M.; Jones W.; Kusko R.; Mason CE.; Mercer T.R.; Sansone SA.; Scherer A.; Shi L.; Thakkar S.; Tong W.; Wolfinger R.; Hunter C.; Segata N.; Huttenhower C.; Dowd J.B.; Jones H.E.; Waldron L. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med. 2021; 27; 1885-1892
Ferdous T.; Jiang L.; Dinu I.; Groizeleau J.; Kozyrskyj A.L.; Greenwood C.M.T.; Arrieta M.C. The rise to power of the microbiome: power and sample size calculation for microbiome studies. Mucosal Immunol. 2022; 15; 1060-1070
Stumptner C.; Stadlbauer V.; O’Neil D.; Gessner A.; Hiergeist A.; Zatloukal K.; Abuja P.M. The Pre-Analytical CEN/TS Standard for Microbiome Diagnostics-How Can Research and Development Benefit? Nutrients. 2022; 14; :1976
Bang E.; Oh S.; Ju U.; Chang H.E.; Hong J.S.; Baek H.J.; Kim K.S.; Lee H.J.; Park K.U. Factors influencing oral microbiome analysis: from saliva sampling methods to next-generation sequencing platforms. Sci Rep. 2023; 13; 10086
Informacje: Archiwum Medycyny Sądowej i Kryminologii, 2025, Vol. 75 (1), s. 48-55
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Katedra Medycyny Sądowej, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu,
Polska
Katedra Medycyny Sądowej, Zakład Genetyki Molekularnej i Sądowej, Wydział Lekarski, Collegium Medicum Uniwersytetu Mikołaja Kopernika
Polska
Katedra Medycyny Sądowej, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu,
Polska
Publikacja: 04.06.2025
Otrzymano: 11.03.2025
Zaakceptowano: 25.04.2025
Status artykułu: Otwarte
Licencja: CC-BY-NC-SA
Finansowanie artykułu:
Udział procentowy autorów:
Informacje o konflikcie interesów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 101
Liczba pobrań: 47