1. Bruni, P. S., Grafinger, K. E., Nussbaumer, S., König, S., Schürch, S., Weinmann, W. (2018). Study of the in vitro and in vivo metabolism of 4-Ho-MEt. Forensic Science International, 290, 103–110. https://doi.org/10.1016/j. forsciint.2018.06.037. 2. Caspar, A. T., Westphal, F., Meyer, M. R., Maurer, H. H. (2018). LC-high resolution-MS/MS for identification of 69 metabolites of the new psychoactive substance 1-(4-ethylphenyl-)-N-[(2-methoxyphenyl)methyl] propane-2-amine (4-Ea-NBoMe) in rat urine and human liver S9 incubates and comparison of its screening power wit. Analytical and Bioanalytical Chemistry, 410(3), 897–912. https://doi.org/10.1007/s00216-017-0526-0. 3. Correia, M. A. (2012). Drug biotransformation. (In) G. B. Katzung, B. S. Masters, J. A. Trevor, Basic and Clinical Pharmacology (pp. 53–68). The McGraw-Hill Companies, Inc. 4. Erratico, C., Negreira, N., Norouzizadeh, H., Covaci, A., Neels, H., Maudens, K., Van Nuijs, A. L. N. (2015). In vitro and in vivo human metabolism of the synthetic cannabinoid aB-CHMINaCa. Drug Testing and Analysis, 7(10), 866–876. https://doi.org/10.1002/dta.1796. 5. Gaunitz, F., Thomas, A., Fietzke, M., Franz, F., Auwärter, V., Thevis, M., Mercer-Chalmers-Bender, K. (2019). Phase I metabolic profiling of the synthetic cannabinoids tHJ-018 and tHJ-2201 in human urine in comparison to human liver microsome and cytochrome P450 isoenzyme incubation. International Journal of Legal Medicine, 133(4), 1049–1064. https://doi.org/10.1007/s00414-018-1964-8. 6. Haschimi, B., Giorgetti, A., Mogler, L., Nagy, T. Z., Kramer, S., Halter, S., Boros, S., Dobos, A., Hidvégi, E., Auwärter, V. (2021). The novel psychoactive substance cumyl-CH-MEGaCLoNE: Human phase-I metabolism, basic pharmacological characterization and comparison to other synthetic cannabinoid receptor agonists with a γ-carboline-1-one core. Journal of Analytical Toxicology, 45(3), 277–290. https://doi.org/10.1093/jat/bkaa065. 7. Hong, Y., Kim, Y. H., Lee, J. M., Yoo, H. H., Choi, S. O., Kang, M. S. (2021). Characterization of in vitro phase I metabolites of methamnetamine in human liver microsomes by liquid chromatography-quadrupole time-of-flight mass spectrometry. International Journal of Legal Medicine, 135(4), 1471–1476. https://doi.org/10.1007/ s00414-021-02594-z. 8. Kim, J. H., Kim, S., Lee, J., In, S., Cho, Y. Y., Kang, H. C., Lee, J. Y., Lee, H. S. (2019). In vitro metabolism of 25B-NBF, 2-(4-bromo-2, 5-dimethoxyphenyl)-N-(2-fluorobenzyl)ethanamine, in human hepatocytes using liquid chromatography–mass spectrometry. Molecules, 24(4), 1–14. https://doi.org/10.3390/molecules24040818. 9. Klaś, K., Guzy, P., Piska, K., Wójcik-Pszczoła, K., Koczurkiewicz-Adamczyk, P., Pękala, E. (2018). Zastosowanie modeli in vitro w przedklinicznych badaniach bezpieczeństwa nowych kandydatów na leki. Farmacja Polska, 74(1), 45–51. 10. Krechniak, J. (2007). Absorbcja, dystrybucja, biotransformacja i wydalanie trucizn. (In) w. Seńczuk (red.), Toksykologia współczesna (pp. 55–153). Warszawa: Wydawnictwo Lekarskie PZWL. 11. Krotulski, A. J., Mohr, A. L. A., Papsun, D. M., Logan, B. K. (2018). Metabolism of novel opioid agonists U-47700 and U-49900 using human liver microsomes with confirmation in authentic urine specimens from drug users. Drug Testing and Analysis, 10(1), 127–136. https://doi. org/10.1002/dta.2228. 12. Lee, S. K., Kang, M. J., Jin, C., In, M. K., Kim, D. H., Yoo, H. H. (2009). Flavin-containing monooxygenase 1-catalysed N,N-dimethylamphetamine N-oxidation DMa. Xenobiotica, 39(9), 680–686. https://doi. org/10.1080/00498250902998699. 13. Manier, S. K., Felske, C., Eckstein, N., Meyer, M. R. (2020). The metabolic fate of two new psychoactive substances − 2-aminoindane and N-methyl-2-aminoindane studied in vitro and in vivo to support drug testing. Drug Testing and Analysis, 12(1), 145–151. https://doi. org/10.1002/dta.2699. 14. Manier, S. K., Felske, C., Zapp, J., Eckstein, N., Meyer, M. R. (2021). Studies on the in vitro and in vivo metabolic fate of the new psychoactive substance N-ethyl-N-propyltryptamine for analytical purposes. Journal of Analytical Toxicology, 45(2), 195–202. https://doi.org/10.1093/ jat/bkaa060. 15. Meyer, M. R., Maurer, H. H. (2009). Enantioselectivity in the methylation of the catecholic phase I metabolites of methylenedioxy designer drugs and their capability to inhibit catechol-o-methyltransferase-catalyzed dopamine 3-methylation. Chemical Research in Toxicology, 22(6), 1205–1211. https://doi.org/10.1021/tx900134e. 16. Murray, K. R. (1995). Metabolizm ksenobiotyków. (In) K. D. Granner, A. P. Mayes, M. W. Rodwell, Biochemia Harpera (pp. 817–823). Warszawa: Wydawnictwo Lekarskie PZWL. 17. Mutschler, E., Geisslinger, G., Kroemer, K. H., Menzel, S., Ruth, P., Shäfer-Korting, M. (2012). Farmakokinetyka. Biotransformacja. (In:) Farmakologia i toksykologia (pp. 21–34). Wrocław: Medpharm Polska. 18. Negreira, N., Erratico, C., Kosjek, T., Van Nuijs, A. L. N., Heath, E., Neels, H., Covaci, A. (2015). In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Analytical and Bioanalytical Chemistry, 407(19), 5803–5816. https://doi.org/10.1007/s00216-015-8763-6. 19. Nielsen, L. M., Holm, N. B., Leth-Petersen, S., Kristensen, J. L., Olsen, L., Linnet, K. (2017). Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBoMe and 25I-NBoH. Drug Testing and Analysis, 9(5), 671–679. https://doi. org/10.1002/dta.2031. 20. Pettersson Bergstrand, M., Richter, L. H. J., Maurer, H. H., Wagmann, L., Meyer, M. R. (2019). In vitro glucuronidation of designer benzodiazepines by human UDP-glucuronyltransferases. Drug Testing and Analysis, 11(1), 45–50. https://doi.org/10.1002/dta.2463. 21. Richter, L. H. J., Flockerzi, V., Maurer, H. H., Meyer, M. R. (2017). Pooled human liver preparations, HeparG, or HepG2 cell lines for metabolism studies of new psychoactive substances? a study using MDMa, MDBD, butylone, MDPPP, MDPV, MDPB, 5-MaPB, and 5-aPI as examples. Journal of Pharmaceutical and Biomedical Analysis, 143, 32–42. https://doi.org/10.1016/j. jpba.2017.05.028. 22. Richter, L. H. J., Maurer, H. H., Meyer, M. R. (2017). New psychoactive substances: Studies on the metabolism of XLr-11, aB-PINaCa, FUB-PB-22, 4-methoxy α-PVP, 25-I-NBoMe, and meclonazepam using human liver preparations in comparison to primary human hepatocytes, and human urine. Toxicology Letters, 280, 142–150. https://doi.org/10.1016/j.toxlet.2017.07.901. 23. Robak, M., Walczak, E. (2009). Niekonwencjonalne drożdże w produkcji heterologicznych białek. Biotechnologia, 4(4), 54–73. 24. Sapota, A. (2017). Drogi wchłaniania, metabolizm i wydalanie ksenobiotyków. (In) k. J. Piotrowski (red.), Podstawy toksykologii. Kompendium dla studentów szkół wyższych (pp. 63–86). Warszawa: Wydawnictwo Naukowe PWN. 25. Sauer, C., Peters, F. T., Schwaninger, A. E., Meyer, M. R., Maurer, H. H. (2009). Investigations on the cytochrome P450 (CyP) isoenzymes involved in the metabolism of the designer drugs N-(1-phenyl cyclohexyl)-2-ethoxyethanamine and N-(1-phenylcyclohexyl)-2-methoxyethanamine. Biochemical Pharmacology, 77(3), 444–450. https://doi.org/10.1016/j.bcp.2008.10.024. 26. Schadt, S., Bister, B., Chowdhury, S. K., Funk, C., Hop, E. C. A., Humphreys, W. G., Igarashi, F., Alexander, J., Kagan, M., Khojasteh, S. C., Nedderman, A. N. R., Prakash, C., Runge, F., Scheible, H., Spracklin, D. K., Swart, P., Tse, S., Yuan, J., Obach, R. S. (2018). A decade in the MISt: Learnings from investigations of drug metabolites in drug development under the “metabolites in safety testing” regulatory guidance. Drug Metabolism and Disposition, 46(6), 865–878. https://doi.org/10.1124/ dmd.117.079848. 27. Schwaninger, A. E., Meyer, M. R., Zapp, J., Maurer, H. H. (2012). Investigations on the stereoselectivity of the phase II metabolism of the 3,4-methylenedioxyethylamphetamine (MDEa) metabolites 3,4-dihydroxyethylamphetamine (DHEa) and 4-hydroxy-3-methoxyethylamphetamine (HMEa). Toxicology Letters, 212(1), 38–47. https://doi.org/10.1016/j.toxlet.2012.04.021. 28. Staack, R. F., Theobald, D. S., Paul, L. D., Springer, D., Kraemer, T., Maurer, H. H. (2004). In vivo metabolism of the new designer drug 1-(4-methoxyphenyl)piperazine (MeoPP) in rat and identification of the human cytochrome P450 enzymes responsible for the major metabolic step. Xenobiotica, 34(2), 179–192. https://doi.org/1 0.1080/00498250310001644544. 29. Teksin, Z. S., Lee, I. J., Nemieboka, N. N., Othman, A., Upreti, V. V., Hassan, H. E., Syed, S. S., Prisinzano, T. E., Eddington, N. D. (2009). Evaluation of the transport, in vitro metabolism and pharmacokinetics of Salvinorin a, a potent hallucinogen. European Journal of Pharmaceutics and Biopharmaceutics, 72(2), 471–477. https://doi.org/10.1016/j.ejpb.2009.01.002. 30. Theobald, D. S., Maurer, H. H. (2007). Identification of monoamine oxidase and cytochrome P450 isoenzymes involved in the deamination of phenethylamine-derived designer drugs (2C-series). Biochemical Pharmacology, 73(2), 287–297. https://doi.org/10.1016/j. bcp.2006.09.022. 31. U.S. Department of Health and Human Services Food and Drug administration, & (CDER). (2016). Safety Testing of Drug Guidance for Industry Metabolites: Vol. Revision 1 (Issue November). Retrieved 20 October 2021 from: https://www.fda.gov/Drugs/GuidanceComplianceregulatory Information/Guidances/default.htm. 32. U.S. Department of Health and Human Services Food and Drug administration, & (CDER). (2020). Safety Testing of Drug Metabolites. Guidance for Industry. https://doi.org/10.1016/S0065-7743(09)04422-4. 33. Wink, C. S. D., Michely, J. A., Jacobsen-Bauer, A., Zapp, J., Maurer, H. H. (2016). Diphenidine, a new psychoactive substance: metabolic fate elucidated with rat urine and human liver preparations and detectability in urine using GC-MS, LC-MSn, and LC-Hr-MSn. Drug Testing and Analysis, 8(10), 1005–1014. https://doi.org/10.1002/ dta.1946. 34. Wintermeyer, A., Möller, I., Thevis, M., Jübner, M., Beike, J., Rothschild, M. A., Bender, K. (2010). In vitro phase I metabolism of the synthetic cannabimimetic JWH-018. Analytical and Bioanalytical Chemistry, 398(5), 2141–2153. https://doi.org/10.1007/s00216-010-4171-0. 35. Xu, D. Q., Zhang, W. F., Li, J., Wang, J. F., Qin, S. Y., Lu, J. H. (2019). Analysis of AMB-FUBINaCa biotransformation pathways in human liver microsome and zebrafish systems by liquid chromatography-high resolution mass spectrometry. Frontiers in Chemistry, 7, 1–9. https://doi.org/10.3389/fchem.2019.00240.