1. Blythe, W., Day, T. D., Grimes, W., D. (1998). 3-dimensional simulation of vehicle response to tire blow-outs. SAE Technical Paper, 980221. DOI:10.4271/980221. 2. Dreher, R., C., Batterson, S. A. (1962). Coefficients of friction and wear characteristics for skids made of various metals on concrete, asphalt and lakebed surfaces. Technical Note NASA. Washington: NASA. 3. Janczur, R. (2015). Granice realnych wartości kąta i prędkości obrotu koła kierownicy podczas manewrów zmiany pasa ruchu. Paragraf na Drodze, 1, 47–56. 4. Lozia, Z. (2005). Simulation tests of biaxial vehicle motion after a tire blow-out. SAE Technical Paper, 2005-01-0410.  5. Mitschke, M. (1995). Dynamik der kraftfahrzeuge, Band A: Antrieb und Bremsung. Berlin/Heidelberg: Springer-Verlag.  6. Mumford, D. k., King, D. J., Savinkoff, M., Lawrence, J., Shumborski, W. (1997). Inverted vehicle drag testing –assessing the effect of speed on deceleration rates. Impact, 6(3), 51–54. 7. Prochowski, L. (2016). Mechanika ruchu. Warszawa: WkiŁ.  8. Regulation No. 13 (UNECE), Uniform provisions concerning the approval of vehicles of categories M, N and O with regard to braking. 2016. 9. SAE International Surface Vehicle Recommended Practice (2014). Instrumentation for impact Test – Part 1 – Electronic instrumentation. SAE Standard J211-1. 10. Wach, W. (2011). Simulation of vehicle accidents using PCCrash. kraków: Institute of Forensic Research Publisher. 11. Zębala, J., Wach, W. (2014). Lane change maneuvre driving a car with reduced tire pressure. SAE Technical Paper, 2014-01-0466. DOI: 10.4271/2014-01-0466. 12. Zębala, J., Wach, W., Ciępka, P., Janczur, R. (2016). Determination of critical speed, slip angle and longitudinal wheel slip based on yaw marks left by a wheel with zero tire pressure. SAE Technical Paper, 2016-01-1480. DOI: 10.4271/2016-01-1480.