TY - JOUR TI - Nozzle suppressed pulsating flow CFD simulation issues AU - Cyklis, Piotr AU - Młynarczyk, Przemysław TI - Nozzle suppressed pulsating flow CFD simulation issues AB - Pressure pulsations in volumetric compressor manifolds are one of the most important problems in compressor operation. These problems occur not only in huge compressor systems such as those used in natural gas piping in gas mines or national transport systems, but also in small refrigeration compressors found in domestic applications. Nowadays, systems require a new approach since in all applications, variable revolution speed compressors are introduced. Mufflers designed in a conventional way on the basis of the Helmholtz theory only have good pressure pulsation damping action within the designed frequency range. In the case of revolution speed change, the reaction of the damper designed according to the Helmholtz theory may be insufficient. Therefore, any innovative ideas for pressure attenuation is welcomed by the compressor industry. One of the possibilities to attenuate pressure pulsations over a wide range of frequencies is the introduction of specially shaped nozzles in the gas duct flow directly after the compressor outlet chamber. It is obvious that the nozzle attenuates pressure and flow pulsations due to energy dissipation, but at the same time, it also raises the requirement for the pumping power of the compressor. The estimation of nozzle pulsation attenuation may be assessed using CFD simulation. In the paper, the influence of the time step and viscous models choices have been shown. The differences between viscous and inviscid gas models have been shown. VL - 2015 IS - Mechanika Zeszyt 1-M (6) 2015 PY - 2016 SN - 0011-4561 C1 - 2353-737X SP - 21 EP - 29 DO - 10.4467/2353737XCT.15.267.4670 UR - https://ejournals.eu/czasopismo/czasopismo-techniczne/artykul/nozzle-suppressed-pulsating-flow-cfd-simulation-issues KW - CFD simulations KW - Pressure pulsations damping KW - nozzle gas flow