1. Sawin J. L.; Sverrisson F.; Seyboth K.; Adib R.; Murdock H. E.; Lins, C.; Edwards, I.; Hullin, M.; Nguyen, L.H.; Prillianto S.S.; Satzinger, K.; Renewables 2017 global status report: 2016. 2. International Energy Agency (IEA); World Energy Outlook: 2016. 3. Jones L. E.; Olsson G.; Solar photovoltaic and wind energy providing water. Global Challenges, 2017; 1, 1600022. 4. Copeland C.; Carter N. T.; Energy-water Nexus: The water sector’s energy use. CRS Report, 2017 https://fas.org/sgp/crs/misc/R43200.pdf. 5. De P.; Majumder M.; Allocation of energy in surface water treatment plants for maximum energy conservation. Environment, Development and Sustainability, 2019; 22, pp. 3347–3370. 6. Blanco J.; Malato S.; Fernández-Ibañez P.; Alarcón D.; Gernjak W.; Maldonado M. I.; Review of feasible solar energy applications to water processes. Renewable and Sustainable Energy Reviews, 2009; 13, pp. 1437–1445. 7. Terzopoulou E.; Voutsa D.; Study of persistent toxic pollutants in a river basin—ecotoxicological risk assessment. Ecotoxicology, 2017; 26, 625–638. 8. Llanos J.; Raschitor A.; Cañizares P.; Rodrigo M. A.; Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2, 4-dichlorophenoxyacetic acid. Electrochimica Acta, 2018; 269, pp. 415–421. 9. Fernández-Marchante C. M.; Souza F. L.; Millán M.; Lobato J.; Rodrigo M. A.; Improving sustainability of electrolytic wastewater treatment processes by green powering. Science of the Total Environment, 2021; 754, 142230. 10. Sousa M. A.; Gonçalves C.; Vilar V. J.; Boaventura R. A.; Alpendurada M. F.; Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chemical Engineering Journal, 2012; 198, pp. 301–309. https://doi.org/10.1016/j.cej.2012.05.060. 11. Souza F. L.; Saéz C.; Llanos J.; Lanza M. R.; Cañizares P.; Rodrigo M. A; Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2, 4-D. Chemical Engineering Journal, 2015; 277, pp. 64–69. 12. Millán M.; Rodrigo M. A.; Fernández-Marchante C. M.; Cañizares P.; Lobato J.; Powering with solar energy the anodic oxidation of wastewater polluted with pesticides. ACS Sustainable Chemistry & Engineering, 2019; 7, pp. 8303–8309. 13. Ghaffour N.; Soukane S.; Lee J. G.; Kim Y.; Alpatova A.; Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review. Applied Energy, 2019; 254, p.113698. 14. Bundschuh J.; Kaczmarczyk M.; Ghaffour N.; Tomaszewska B.; State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 2021; 508, pp. 115035. 15. Lovegrove K.; Stein W.; Concentrating Solar Power Technology. Principles, Developments and Applications. No. 21. Woodhead Publishing Series in Energy. Cambridge, UK: Woodhead Publishing Limited, 2012; ISBN: 9781845697693. 16. Romero M.; González‐Aguilar J.; Solar thermal CSP technology. Wiley Interdisciplinary Reviews: Energy and Environment, 2013; 3, pp. 42–59. 17. Al-Nory M.; El-Beltagy M.; An energy management approach for renewable energy integration with power generation and water desalination. Renewable Energy, 2014; 72, pp. 377–385. 18. Ahmed F. E.; Hashaikeh R.; Hilal N.; Solar powered desalination–Technology, energy and future outlook. Desalination, 2019; 453, pp. 54–76. 19. Eddine Boukelia T.; Mecibah M. S.; Parabolic trough solar thermal power plant: Potential, and projects development in Algeria. Renewable and Sustainable Energy Reviews, 2013; 21, pp. 288–297. https://doi.org/10.1016/j.rser.2012.11.074. 20. Jebasingh V. K.; Herbert G. J.; A review of solar parabolic trough collector. Renewable and Sustainable Energy Reviews, 2016; 54, pp. 1085–1091. https://doi.org/10.1016/j.rser.2015.10.043. 21. Zheng Y.; Hatzell K. B.; Technoeconomic analysis of solar thermal desalination. Desalination, 2020; 474, p. 114168. 22. Huang L.; Jiang H.; Wang Y.; Ouyan Z.; Wang W.; Yang B.; Liu H.; Hu X.; Enhanced water yield of solar desalination by thermal concentrated multistage distiller. Desalination, 2020; 477, p. 114260. 23. Achkari O.; El Fadar A.; Latest developments on TES and CSP technologies–Energy and environmental issues, applications and research trends. Applied Thermal Engineering, 2020; 167, p. 114806. https://doi.org/10.1016/j.applthermaleng.2019.114806. 24. Zheng Y.; Gonzalez R. C.; Hatzell M. C.; Hatzell K. B.; Concentrating solar thermal desalination: Performance limitation analysis and possible pathways for improvement. Applied Thermal Engineering, 2021; 184, p.116292. https://doi.org/10.1016/j.applthermaleng.2020.116292. 25. Aqachmar Z.; Allouhi A.; Jamil A.; Gagouch B.; Kousksou T.; Parabolic trough solar thermal power plant Noor I in Morocco. Energy, 2019; 178, pp. 572–584. https://doi.org/10.1016/j.energy.2019.04.160. 26. Compain, P.; Solar energy for water desalination. Procedia Engineering, 2012; 46, pp. 220–227. https://doi.org/10.1016/j.proeng.2012.09.468. 27. Fiorenza G.; Sharma V. K.; Braccio G. Techno-economic evaluation of a solar powered water desalination plant. Energy conversion and management, 2003; 44, pp. 2217–2240. https://doi.org/10.1016/S0196-8904(02)00247-9. 28. Ahmad G. E.; Schmid, J.; Feasibility study of brackish water desalination in the Egyptian deserts and rural regions using PV systems. Energy Conversion and Management, 2002; 43, pp. 2641–2649. https://doi.org/10.1016/S0196-8904(01)00189-3. 29. Scrivani A.; Energy management and DSM techniques for a PV-diesel powered sea water reverse osmosis desalination plant in Ginostra, Sicily. Desalination, 2005; 183, pp. 63–72. https://doi.org/10.1016/j.desal.2005.02.043. 30. Ortiz J. M.; Expósito E.; Gallud F.; García-García V.; Montiel V.; Aldaz A; Photovoltaic electrodialysis system for brackish water desalination: Modeling of global process. Journal of Membrane Science, 2006; 274, pp. 138–149. https://doi.org/10.1016/j.memsci.2005.08.006. 31. Novosel T.; Ćosić B.; Pukšec T.; Krajačić G.; Duić N.; Mathiesen B.V.; Lund H.; Mustafa M.; Integration of renewables and reverse osmosis desalination–Case study for the Jordanian energy system with a high share of wind and photovoltaics. Energy, 2015; 92, pp. 270–278. https://doi.org/10.1016/j.energy.2015.06.057. 32. Darwish M. A.; Abdulrahim H. K.; Hassan A. S.; Mabrouk A. A.; PV and CSP solar technologies & desalination: economic analysis. Desalination and Water Treatment, 2016; 57, pp. 16679–16702. https://doi.org/10.1080/19443994.2015.1084533. 33. Feria-Díaz J. J.; Correa-Mahecha F.; López-Méndez M. C.; Rodríguez-Miranda J. P.; Barrera-Rojas J.; Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. Water, 2021; 13, p. 1369. 34. Eke J.; Yusuf A.; Giwa A.; Sodiq A; The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination, 2020; 495, p. 114633 35. Virgili F.; Brown H.; Pankratz T.; IDA Desalination Yearbook 2017–2018. Media Analytics Ltd.: Oxford, UK: 2018; pp. 5–15. 36. Jones E.; Qadir M.; van Vliet M. T.; Smakhtin V.; Kang S. M.; The state of desalination and brine production: A global outlook. Science of the Total Environment, 2019; 657, pp. 1343–1356. 37. Manju S.; Sagar N.; Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renewable and Sustainable Energy Reviews, 2017; 73, pp. 594–609. 38. Thimmaraju M.; Sreepada D.; Babu G. S.; Dasari B. K.; Velpula S. K.; Vallepu N.; Desalination of water. Desalination and Water Treatment, 2018; pp. 333–347. 39. Khayet M.; Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review). Desalination, 2013; 308, pp. 89–101. 40. Mittelman G.; Mouchtar O.; Dayan A.; Large-scale solar thermal desalination plants: A review. Heat transfer engineering, 2007; 28, pp. 924–930. 41. Gastli A.; Charabi Y.; Zekri S.; GIS-based assessment of combined CSP electric power and seawater desalination plant for Duqum—Oman. Renewable and Sustainable Energy Reviews, 2010; 14, pp. 821–827. https://doi.org/10.1016/j.rser.2009.08.020. 42. Gonzalez A.; Grágeda M.; Ushak, S.; Assessment of pilot-scale water purification module with electrodialysis technology and solar energy. Applied Energy, 2017; 206, pp. 1643–1652. https://doi.org/10.1016/j.apenergy.2017.09.101 43. Li X.; Lin R.; Ni G.; Xu N.; Hu X.; Zhu B.; Lv G.; Li J.; Zhu S.; Zhu J.; Three-dimensional artificial transpiration for efficient solar waste-water treatment. National Science Review, 2018; 5, pp. 70–77. https://doi.org/10.1093/nsr/nwx051. 44. Zhang Y.; Sivakumar M.; Yang, S.; Enever K.; Ramezanianpour M.; Application of solar energy in water treatment processes: A review. Desalination, 2018; 428, pp. 116–145. 45. Yang Y.; Zhao R.; Zhang T. Zhao K. Xiao P.; Ma Y.; Ajayan P.M.; Shi G.; Chen Y.; Graphene-based standalone solar energy converter for water desalination and purification. ACS nano, 2018; 12, pp. 829–835. https://doi.org/10.1021/acsnano.7b08196. 46. Nassrullah H.; Anis S. F.; Hashaikeh R.; Hilal N.; Energy for desalination: A state-of-the-art review. Desalination, 2020; 491, p. 114569. 47. Chen C.; Jiang Y.; Ye Z.; Yang Y.; Hou L. A.; Sustainably integrating desalination with solar power to overcome future freshwater scarcity in China. Global Energy Interconnection, 2019; 2, pp. 98–113. 48. Tufa R. A.; Pawlowski S.; Veerman J.; Bouzek K.; Fontananova E.; Di Profio G.; Velizarov S.; Crespo J.G.; Nijmeijer K.; Curcio E.; Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Applied energy, 2018; 225, pp. 290–331. 49. Pandey A.K.; Kumar R.R.; Kalidasan B.; Laghari I.A.; Samykano M.; Kothari R.; Abusorrah A.M.; Sharma K.; Tyagi V.V.; Utilization of solar energy for wastewater treatment: Challenges and progressive research trends. Journal of Environmental Management, 2021; 297, p.113300. https://doi.org/10.1016/j.jenvman.2021.113300. 50. Aqlan A. M.; Aklan M.; Momin A. E.; Solar-powered desalination, a novel solar still directly connected to solar parabolic trough. Energy Reports, 2021; 7, pp. 2245–2254. 51. Rahimi B.; Shirvani H.; Alamolhoda A. A.; Farhadi F.; Karimi M.; A feasibility study of solar-powered reverse osmosis processes. Desalination, 2021; 500, p. 114885. 52. Mitra P.; Banerjee P.; Chakrabarti S.; Bhattacharjee S.; Utilization of solar energy for photoreduction of industrial wastewater containing hexavalent chromium with zinc oxide semiconductor catalyst. Desalination and Water Treatment, 2013; 51, pp. 5451–5459 53. Tiwari G. N.; Singh H. N.; Tripathi R; Present status of solar distillation. Solar energy, 2003; 75, pp. 367–373. 54. Al-harahsheh M.; Abu-Arabi M.; Mousa H.; Alzghoul Z.; Solar desalination using solar still enhanced by external solar collector and PCM. Applied Thermal Engineering, 2018; 128, pp. 1030–1040. https://doi.org/10.1016/j.applthermaleng.2017.09.073. 55. Al-Sulaiman F. A.; Zubair M. I.; Atif M.; Gandhidasan P.; Al-Dini S. A.; Antar M. A; Humidification dehumidification desalination system using parabolic trough solar air collector. Applied Thermal Engineering, 2015; 75, pp. 809–816 56. Abdelmoez W.; Mahmoud M. S.; Farrag T. E.; Water desalination using humidification/dehumidification (HDH) technique powered by solar energy: a detailed review. Desalination and Water Treatment, 2014; 52, pp. 4622–4640. https://doi.org/10.1080/19443994.2013.804457. 57. Giwa A.; Akther N.; Al Housani A.; Haris S.; Hasan S. W.; Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity. Renewable and Sustainable Energy Reviews, 2016; 57, pp. 929–944. https://doi.org/10.1016/j.rser.2015.12.108. 58. Hamed M. H.; Kabeel A. E.; Omara Z. M.; Sharshir S. W.; Mathematical and experimental investigation of a solar humidification–dehumidification desalination unit. Desalination, 2015; 358, pp. 9–17. https://doi.org/10.1016/j.desal.2014.12.005. 59. Zamen M.; Soufari S. M.; Vahdat S. A.; Amidpour M.; Zeinali M. A.; Izanloo H.; Aghababaie H.; Experimental investigation of a two-stage solar humidification–dehumidification desalination process. Desalination, 2014; 332, pp. 1–6. https://doi.org/10.1016/j.desal.2013.10.018. 60. Ali M. T.; Fath H. E.; Armstrong P. R.; A comprehensive techno-economical review of indirect solar desalination. Renewable and Sustainable Energy Reviews, 2011; 15, pp. 4187–4199. 61. Sharaf Eldean M. A.; Fath H. E.; Exergy and thermo-economic analysis of solar thermal cycles powered multi-stage flash desalination process. Desalination and Water Treatment, 2013; 51, pp. 7361–7378. https://doi.org/10.1080/19443994.2013.775670. 62. Alsehli M.; Choi J. K.; Aljuhan M.; A novel design for a solar powered multistage flash desalination. Solar Energy, 153, pp. 348–359. https://doi.org/10.1016/j.solener.2017.05.082. 63. Darawsheh I.; Islam M. D.; Banat, F.; Experimental characterization of a solar powered MSF desalination process performance. Thermal Science and Engineering Progress, 2019; 10, pp. 154–162. https://doi.org/10.1016/j.tsep.2019.01.018. 64. Al-Shammiri M.; Safar M.; Multi-effect distillation plants: state of the art. Desalination, 1999; 126, pp. 45–59. 65. Palenzuela P.; Hassan A. S. Zaragoza G.; Alarcón-Padilla D. C.; Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant. Desalination, 2014; 337, pp. 31–42. 66. Alarcon-Padilla D. C.; García-Rodríguez L.; Blanco-Gálvez J.; Assessment of an absorption heat pump coupled to a multi-effect distillation unit within AQUASOL project. Desalination, 2007; 212, pp. 303–310. https://doi.org/10.1016/j.desal.2006.10.015. 67. Alarcon-Padilla D. C.; Blanco-Gálvez J.; García-Rodríguezz L.; Gernjak W.; Malato-Rodriguez S.; First experimental results of a new hybrid solar/gas multi-effect distillation system: the AQUASOL project. Desalination, 220, pp. 619–625. https://doi.org/10.1016/j.desal.2007.05.027. 68. Olwig R.; Hirsch T.; Sattler C.; Glade H.; Schmeken L.; Will S.; Ghermandi A.; Messalem R.; Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan. Desalination and Water Treatment, 2012; 41, pp. 9–25. https://doi.org/10.1080/19443994.2012.664674. 69. Ghaffour N.; Bundschuh J.; Mahmoudi H.; Goosen M. F.; Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination, 2013; 356, pp. 94–114. 70. Casimiro S.; Cardoso J.; Ioakimidis C.; Farinha Mendes J.; Mineo C.; Cipollina A.; MED parallel system powered by concentrating solar power (CSP). Model and case study: Trapani, Sicily. Desalination and Water Treatment, 2015; 55, pp. 3253–3266. https://doi.org/10.1080/19443994.2014.940222. 71. Lei Z.; Chen B.; Ding Z; Special distillation processes. 2005; Elsevier. 72. Koschikowski J.; Wieghaus M.; Rommel M.; Ortin V. S.; Suarez B. P.; Rodríguez J. R. B.; Experimental investigations on solar driven stand-alone membrane distillation systems forremote areas. Desalination, 2009; 248, pp. 125–131. https://doi.org/10.1016/j.desal.2008.05.047. 73. Banat F.; Jwaied N.; Autonomous membrane distillation pilot plant unit driven solar energy: Experiences and lessons learned. Int. J. Sustain. Water Environ. Syst, 2010; 1, pp. 21–24. 74. Banat F.; Jwaied N.; Rommel M.; Koschikowski J.; Wieghaus M.; Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination, 2007; 217, pp. 17–28. https://doi.org/10.1016/j.desal.2006.11.027. 75. Saffarini R. B.; Summers E. K.; Arafat H. A.; Economic evaluation of stand-alone solar powered membrane distillation systems. Desalination, 2012; 299, pp. 55–62. https://doi.org/10.1016/j.desal.2012.05.017. 76. Chafidz A.; Al-Zahrani S.; Al-Otaibi M. N.; Hoong C. F.; Lai T. F.; Prabu M.; Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination, 2014; 345, pp. 36–49. https://doi.org/10.1016/j.desal.2014.04.017. 77. Kurupath V. P.; Kannam S. K.; Hartkamp R.; Sathian S. P.; Highly efficient water desalination through hourglass shaped carbon nanopores. Desalination, 2021; 505, p. 114978. 78. Burn S.; Hoang M.; Zarzo D.; Olewniak F.; Campos E.; Bolto B.; Barron O.; Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination, 2015; 364, pp. 2–16. 79. Mokheimer E. M.; Sahin A. Z.; Al-Sharafi A.; Ali A. I.; Modeling and optimization of hybrid wind–solar-powered reverse osmosis water desalination system in Saudi Arabia. Energy Conversion and Management, 2013; 75, pp. 86–97. https://doi.org/10.1016/j.enconman.2013.06.002. 80. Penate B.; Subiela V. J.; Vega F.; Castellano F.; Domínguez F. J.; Millán V.; Uninterrupted eight-year operation of the autonomous solar photovoltaic reverse osmosis system in Ksar Ghilène (Tunisia). Desalination and Water Treatment, 2014; 55, pp. 3141–3148. https://doi.org/10.1080/19443994.2014.940643. 81. Soliman M. N.; Guen F. Z.; Ahmed S. A.; Saleem H.; Khalil M. J.; Zaidi S. J.; Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Safety and Environmental Protection, 2021; 147, pp. 589–608 82. Qasim M.; Darwish N. A.; Sarp S.; Hilal N.; Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination, 2015; 374, pp. 47–69. 83. Johnson D. J.; Suwaileh W. A.; Mohammed A. W.; Hilal N.; Osmotic’s potential: An overview of draw solutes for forward osmosis. Desalination, 2018; 434, pp. 100–120. 84. Amy G.; Ghaffour N.; Li Z.; Francis L.; Linares R. V.; Missimer T.; Lattemann S.; Membrane-based seawater desalination: Present and future prospects. Desalination, 2017; 401, pp. 16–21. 85. Khayet M.; Sanmartino J. A.; Essalhi M.; García-Payo M. C.; Hilal N.; Modeling and optimization of a solar forward osmosis pilot plant by response surface methodology. Solar Energy, 2016; 137, pp. 290–302. https://doi.org/10.1016/j.solener.2016.07.046. 86. Suwaileh W.; Johnson D.; Jones D.; Hilal N.; An integrated fertilizer driven forward osmosis-renewables powered membrane distillation system for brackish water desalination: a combined experimental and theoretical approach. Desalination, 2019; 471, p. 114126. https://doi.org/10.1016/j.desal.2019.114126.   87. Skuse C.; Gallego-Schmid A.; Azapagic A.; Gorgojo P.; Can emerging membrane-based desalination technologies replace reverse osmosis?. Desalination, 2020; 500, p. 114844. 88. Wright N. C.; Justification for community-scale photovoltaic-powered electrodialysis desalination systems for inland rural villages in India. Desalination, 2014; 352, pp. 82–91. 89. Li C.; Goswami Y.; Stefanakos E.; Solar assisted sea water desalination: A review. Renewable and Sustainable Energy Reviews, 2013; 19, pp. 136–163. 90. Zhang Y.; Pinoy L.; Meesschaert B.; Van der Bruggen B.; A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system. Environmental science & technology, 2013; 47, pp. 10548–10555. https://doi.org/10.1021/es402534m. 91. He W.; Amrose S.; Wright N. C.; Buonassisi T.; Peters I. M.; Field demonstration of a cost-optimized solar powered electrodialysis reversal desalination system in rural India. Desalination, 2014; 476, p.114217. https://doi.org/10.1016/j.desal.2019.114217. 92. Chong M. N.; Jin B.; Chow C. W.; Saint C.; Recent developments in photocatalytic water treatment technology: a review. Water research, 2010; 44, pp. 2997–3027. 93. Spasiano D.; Marotta R.; Malato S.; Fernandez-Ibanez P.; Di Somma I.; Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental, 2015; 170, pp. 90–123. 94. Braham R. J.; Harris A. T.; Review of major design and scaleup considerations for solar photocatalytic reactors. Industrial & Engineering Chemistry Research, 2009; 48, pp. 8890–8905. 95. Joyce A.; Loureiro D.; Rodrigues C.; Castro S.; Small reverse osmosis units using PV systems for water purification in rural places. Desalination, 2001; 137, 39–44. https://doi.org/10.1016/S0011-9164(01)00202-8. 96. Khaydarov R. A.; Khaydarov R. R.; Solar powered direct osmosis desalination. Desalination, 2007; 217, pp. 225–232. https://doi.org/10.1016/j.desal.2007.03.004. 97. Zhang K.; Farahbakhsh K.; Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse. Water research, 2007; 41, pp. 2816–2824. https://doi.org/10.1016/j.watres.2007.03.010. 98. Malato S.; Fernández-Ibáñez P.; Maldonado M. I.; Blanco J.; Gernjak W.; Decontamination and  disinfection of water by solar photocatalysis: recent overview and trends. Catalysis today, 2009; 147, pp. 1–59. https://doi.org/10.1016/j.cattod.2009.06.018. 99. Li Y.; Samad S.; Ahmed F. W.; Abdulkareem S. S.; Hao S.; Rezvani A.; Analysis and enhancement of PV efficiency with hybrid MSFLA–FLC MPPT method under different environmental conditions. Journal of Cleaner Production, 2020; 271, p. 122195. https://doi.org/10.1016/j.jclepro.2020.122195.