FAQ
logo of Jagiellonian University in Krakow

Instantiation overflow

Publication date: 14.09.2016

Reports on Mathematical Logic, 2016, Number 51, pp. 15 - 33

https://doi.org/10.4467/20842589RM.16.002.5279

Authors

,
Bruno Dinis
Departamento de Matematica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, Ed. C6, 1749-016, Lisboa, Portugal
All publications →
Gilda Ferreira
Departamento de Matematica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, Ed. C6, 1749-016, Lisboa, Portugal
All publications →

Titles

Instantiation overflow

Abstract

The well-known embedding of full intuition- istic propositional calculus into the atomic polymorphic system Fat is possible due to the intriguing phenomenon of instantiation overflow. Instantiation overflow ensures that (in Fat) we can instantiate certain universal formulas by any formula of the system, not necessarily atomic. Until now only three types in Fat were identified with such property: the types that result from the Prawitz translation of the propositional connectives (?, ^, _) into Fat (or Girard's system F). Are there other types in Fat with instantiation overflow? In this paper we show that the answer is yes and we isolate a class of formulas with such property.

References

[1] F. Ferreira, Comments on Predicative Logic, Journal of Philosophical Logic 35 (2006), 1–8.

[2] F. Ferreira and G. Ferreira, Commuting conversions vs. the standard conversions of the “good” connectives, Studia Logica 92 (2009), 63–84.

[3] F. Ferreira and G. Ferreira, Atomic Polymorphism, Journal of Symbolic Logic 78:1 (2013), 260–274.

[4] F. Ferreira and G. Ferreira, The faithfulness of atomic polymorphism, Trends in Logic XIII, A. Indrzejczak, J. Kaczmarek, M. Zawidzki (eds.), Lo´d´z University Press, pp. 55–64, 2014.

[5] F. Ferreira and G. Ferreira, The faithfulness of Fat: a proof-theoretic proof, Studia Logica 103:6 (2015), 1303–1311.

[6] J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge University Press, 1989.

[7] D. Prawitz, Natural Deduction, Almkvist & Wiskell, Stockholm, 1965. Reprinted in Dover Publications, 2006.

Information

Information: Reports on Mathematical Logic, 2016, Number 51, pp. 15 - 33

Article type: Original article

Titles:

Polish:

Instantiation overflow

English:

Instantiation overflow

Authors

Departamento de Matematica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, Ed. C6, 1749-016, Lisboa, Portugal

Departamento de Matematica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, Ed. C6, 1749-016, Lisboa, Portugal

Published at: 14.09.2016

Article status: Open

Licence: None

Percentage share of authors:

Bruno Dinis (Author) - 50%
Gilda Ferreira (Author) - 50%

Article corrections:

-

Publication languages:

English

View count: 2096

Number of downloads: 1076

<p> Instantiation overflow</p>