FAQ
logo of Jagiellonian University in Krakow

Some Fragments of Second-Order Logic Over the Reals for Which Satisfiability and Equivalence Are (Un)Decidable

Publication date: 21.10.2014

Reports on Mathematical Logic, 2014, Number 49, pp. 23-34

https://doi.org/10.4467/20842589RM.14.002.2272

Authors

,
Rafael Grimson
CONICET and Escuela de Ciencia y Tecnologica, Universidad de San Marteen, Campus Miguelete (CP1650). San Martn, Provincia de Buenos Aires, Argentina
Contact with author
All publications →
Bart Kuijpers
Databases and Theoretical Computer Science Group, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium
All publications →

Download full text

Titles

Some Fragments of Second-Order Logic Over the Reals for Which Satisfiability and Equivalence Are (Un)Decidable

Abstract

 We consider the Σ1-fragment of second-order logic over the vocabulary (+, ×, 0, 1, <, S1, ..., Sk), interpreted over the reals, where the predicate symbols Si are interpreted as semi- algebraic sets. We show that, in this context, satisfiability of formulas is decidable for the first-order ∃∗-quantifier fragment and undecidable for the ∃∗∀- and ∀∗-fragments. We also show that for these three fragments the same (un)decidability results hold for containment and equivalence of formulas.

References

Download references

[1] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Volume 36 of Ergebenisse der Mathematik und ihrerGrenzgebiete, Folge 3, Springer-Verlag, Berlin, 1998.

[2] G. Jeronimo and J. Sabia, On the number of sets definable by polynomials, Journal Algebra 227:2 (2000), 633–644.

[3] E. B¨orger, E. Gr¨adel and Y. Gurevich, The Classical Decision Problem, Monographs in Mathematical Logic, Springer-Verlag, 2000.

[4] D. Grigoriev and N. N. (jr.) Vorobjov, Solving systems of polynomial inequalities in subexponential time, Journal ofSymbolic Computation (1988), 37–64.

[5] J. P. Jones and Y. V. Matijasevich, Exponential Diophantine representation of recursively enumerable sets, In J. Stern,editor, Proceedings of the Herbrand Symposium: Logic Colloquium ’81, volume 107of Studies in Logic and the Foundationsof Mathematics, Amsterdam. North Holland, 1982, pp.159–177.

[6] Y. V. Matijasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge, MA, 1993.

[7] J. Paredaens, G. Kuper and L. Libkin, editors, Constraint databases, Springer- Verlag, 2000.

[8] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California Press, 1951.

Information

Information: Reports on Mathematical Logic, 2014, Number 49, pp. 23-34

Article type: Original article

Authors

CONICET and Escuela de Ciencia y Tecnologica, Universidad de San Marteen, Campus Miguelete (CP1650). San Martn, Provincia de Buenos Aires, Argentina

Databases and Theoretical Computer Science Group, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium

Published at: 21.10.2014

Article status: Open

Licence: None

Percentage share of authors:

Rafael Grimson (Author) - 50%
Bart Kuijpers (Author) - 50%

Article corrections:

-

Publication languages:

English

Some Fragments of Second-Order Logic Over the Reals for Which Satisfiability and Equivalence Are (Un)Decidable

cytuj

pobierz pliki

RIS BIB ENDNOTE