FAQ
Jagiellonian University logo

Tolerance of Naked Amoebae to Low Oxygen Levels with an Emphasis on the Genus Acanthamoeba

Publication date: 15.05.2011

Acta Protozoologica, 2011, Volume 50, Issue 1, pp. 33 - 40

https://doi.org/10.4467/16890027AP.11.004.0004

Authors

,
Ivan Cometa
California State University Fresno, CA, USA
All publications →
,
Scott Schatz
All publications →
,
Wendy Trzyna
Department of Biological Sciences, Marshall University, Huntington, WV, USA
All publications →
Andrew Rogerson
California State University Fresno, CA, USA
All publications →

Titles

Tolerance of Naked Amoebae to Low Oxygen Levels with an Emphasis on the Genus Acanthamoeba

Abstract

Amoebae feed on attached bacteria within, and below, bacterial biofilms where they experience reduced oxygen levels. The implications of this were examined by comparing the migration (an index of growth) of thirteen strains of Acanthamoeba and five species of naked amoebae grown under microaerophilic and aerobic conditions. All amoebae replicated well under both conditions and twelve isolates migrated significantly faster under low oxygen. Only one isolate, Vannella sp., migrated further (presumably grew faster) under aerobic conditions. The data show most amoebae prefer low oxygen as befits the biofilm habitat. Interestingly, the eleven acanthamoeba strains that replicated faster under microaerophilic conditions were all T4 genotypes and included four strains isolated from patients with amoeba keratitis (AK) infections. This genotype is most frequently found in AK cases and it is suggested that strains of Acanthamoeba capable of rapid growth in a biofilm of a poorly cleansed contact lens may enable amoebae to multiply and provide an infective dos e when placed onthe cornea.

References

Download references

Aitken D., Hay J., Kirkness C. M., Lee W. R., Seal D .V. (1996) Amebic keratitis in wearer of disposable contact lenses due to a mixed Vahlkampfia and Hartmannella infection. Ophthalmol. 103: 385–494

Anderson I. J., Watkins R. F., Samuelson J., Spencer D. F., Majoros W. H. Gray M. W., Loftus B. J. (2005) Gene discovery in the Acanthamoeba castellanii genome. Protist 156: 203–214

Anwar H., Stap J. L., Costerton J. W., (1992) Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother. 36: 1347–1351

Barbeau J., Buhler T. (2001) Biofilms augment the number of freeliving amoebae in dental unit waterlines. Res. Microbiol152: 753–760

Beattie T. K., Tomlinson A., McFadyen A. K. (2006) Attachment of Acanthamoeba to first and second generation silicone hydrogel contact lenses. Opthalmol. 113: 117 –125

Booton G. C., Kelly D. J., Chu Y. –W., Seal D. V., Houang E., Lam D. S. C., Byers T. J., Fuerst P. A. (2002) 18S ribosomal DNA typing and tracking of Acanthamoeba isolates from cornealscrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. J. Clin. Microbiol. 40: 1621–1625

Booton G. C., Rogerson A., Bonilla T. D., Seal D. V., Kelly D. J., Beattie T. K., Tomlinson A., Lares-Villa F., Fuerst P. A., Byers T. J. (2004) Molecular and physiological evaluation of subtropical environmental isolates of Acanthamoeba spp., causal agent of Acanthamoeba keratitis. J. Euk. Microbiol51: 192–200

Bryers, J. D. (1982) Processes governing primary biofilm formation. Biotech. Bioeng24: 2451–2476

DeJonckheere J. F. (1983) Growth characteristics, cytopathic effect in cell culture and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp. Appl. Environ. Microbiol39: 681–685

Devonshire P., Munro F. A., Abernethy C., Clark B. J. (1993) Microbial contamination of contact lens cases in the west of Scotland. Brit. J. Ophthalmol. 77: 41–45

Dua H. S., Azuara-Blanco A., Hossain M., Lloyd J. (1998) Nonacanthamoeba amebic keratitis. Cornea 17: 675–677

Finlay B. J., Esteban G. F. (2001) Exploring Leeuwenhoek’s legacy: the abundance and diversity of protozoa. Int. Microbiol4: 125–133

Fleiszig S. M., Effron N., Pier G. B. (1992) Extended contact lens wear enhances Pseudomonas aeruginosa adherence to human corneal epithelium. Invest. Ophthalmol. Vis. Sci. 33: 2908–2916

Fleiszig S. M., Evans D. J. (2010) Pathogenesis of contact lensassociated microbial keratitis. Optom.and Vis. Sci. 87: 225–232

Gray T. B., Cursons R. T. M., Sherwan J. F., Rose P. R. (1995) Acanthamoeba, bacterial and fungal contamination of contact lens storage cases. Brit. J. Ophthalmol. 79: 601–605

Heal O. W. (1967) Quantitative feeding studies on soil amoebae. In: Progress in Soil Biology, (Eds. O. Graff, J. E. Satchell). North Holland Publishing Co., Amsterdam

Heaton K., Drinkall J., Minett A., Hunt A. P., Parry J. D. (2001) Amoeboid grazing on surface-associated prey. In: Biofilm Community interaction – Chance or Necessity?, (Eds. P. Gilbert, D. Allison, M. Brading, J. Verran, J. Walker). Bioline, Cardiff University, 293–301

Imayasu M., Petroll W. M., Jester J. V. (1994) The relation between contact lens oxygen transmissibility and binding of Pseudomonas aeruginosa to the cornea after overnight wear. Ophthalmol. 101: 371–388.

Kennedy S. M., Devine P., Hurley C., Ooi Y. S., Collum L. M. (1995) Corneal infection associated with Hartmannella vermiformis in contact lens wearer. Lancet 346: 637–638

Khan N. A., Jarroll E. L., Paget T. A. (2002) Molecular and physiological differentiation between pathogenic and nonpathogenic AcanthamoebaCurr. Microbiol. 45: 197–202

Kitching J. A. (1939) On the activity of protozoa at low oxygen tensions. The Biol. Bull. 77: 227 – 236

Kühl M., Rickelt L. F., Thar R. (2007) Combined imaging of bacteria and oxygen in biofilms. Appl. Environ. Microbiol. 73: 6289–6295

Liesgang, T. J. (2002) Physiological changes of the cornea with contact lens wear. The CLAO Journal 28:12–27

Marciano-Cabral F., Cabral G. (2003) Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16: 273–301

Old K. M. (1977) Giant soil amoebae cause perforation of conidia of Cochliobolus sativusTrans. Br. Mycol. Soc68: 227–281

Page F. C. (1988) A New Key to Freshwater and Soil Gymnamoebae. Freshwater Biological Association, Ambleside, England, UK

Parry J. D. (2004) Protozoan grazing of freshwater biofilms. Adv. Appl. Microbiol. 54: 1167–1196

Pickup Z. L., Pickup R., Parry J. D. (2007) Effects of bacterial prey species and their concentration on growth of the amoebae Acanthamoeba castellanii and Harmannella vermiformisAppl. Environ. Microbiol. 73: 2631–2634

Polne-Fuller M., Rogerson A., Amano H., Gibor A. (1990) Digestion of seaweeds by the marine amoeba TrichosphaeriumHydrobiol. 204/205: 409–413

Reuter M., Mallett A., Pearson B. M., Vliet A. H. M. (2010) Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl. Environ. Microbiol. 76: 2122–2128

Rogerson A., Laybourn-Parry J. (1992). Aggregate dwelling protozooplankton communities in estuaries. Archiv. für Hydrobiol. 125: 411–422

Seal D.V. (2003) Acanthamoeba keratitis update-incidence, molecular epidemiology and new drugs for treatment. Eye 17: 893–905

Sack R. A., Tan K. O., Tan A. (1992) Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol. Vis. Sci. 33: 626–40

Sack R. A., Sathe S., Beaton A. (2003) Tear turnover and inflammatory processes in the open-eye and closed-eye environments: relationship to extended wear contact lens use. Eye & Contact Lens 29: S80–S82

Shoff M. E., Rogerson A., Schatz S., Seal D. (2007a) Variable responses of Acanthamoeba strains to three multipurpose lens cleaning solutions Optom. Vis. Sci. 84: 202–207

Shoff M. E., Rogerson A., Kessler K., Schatz S., Seal D. V. (2007b) Prevalence of Acanthamoeba and other naked amoebae in South Florida domestic water. J. Water Health 6: 99–104

Solomon O. D. (1996) Corneal stress test for extended wear CLAO J. 22: 75–78

Stehr-Green J. K., Bailey T. M., Visvesvara G.S. (1987) The epidemiology of Acanthamoeba keratitis in the United States. Am. J. Ophthalmol107: 331–336

Tan K. O., Sack R. A., Holden B. A. (1993) Temporal sequence of changes in tear film composition during sleep. Curr. Eye Res12: 1001–1007

Turner N. A., Biagini G. A., Lloyd D. (1997) Anaerobiosis-induced differentiation of Acanthamoeba castellaniiFEMS Microbiol. Letters 157: 149–153

Vesilind P. A. (2003) Wastewater Treatment Plant Design. Water Environment Federation, T.J. International Ltd, Padstow UK

Wang X., Ahearn D. G., (1997) Effects of bacteria on survival and growth of Acanthamoeba castellaniiCurr. Microbiol. 34: 212– 215

Wilson L. A., Sawant A. D., Simmons R. B., Ahearn D. G. (1990) Microbial contamination of contact lens storage cases and solutions. Am. J. Ophthalmol. 110: 193–198

Weitere M., Bergfeld T., Rice S. A., Matz C., Kjelleberg S. (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanisms, developmental stage and protozoan feeding mode. Environ. Microbiol. 7: 1593–1601

Information

Information: Acta Protozoologica, 2011, Volume 50, Issue 1, pp. 33 - 40

Article type: Original article

Authors

California State University Fresno, CA, USA

Department of Biological Sciences, Marshall University, Huntington, WV, USA

California State University Fresno, CA, USA

Published at: 15.05.2011

Article status: Open

Licence: None

Percentage share of authors:

Ivan Cometa (Author) - 25%
Scott Schatz (Author) - 25%
Wendy Trzyna (Author) - 25%
Andrew Rogerson (Author) - 25%

Article corrections:

-

Publication languages:

English