FAQ
Jagiellonian University logo

Response of Sphagnum Testate Amoebae to Drainage, Subsequent Re-wetting and Associated Changes in the Moss Carpet – Results from a Three Year Mesocosm Experiment

Publication date: 13.12.2017

Acta Protozoologica, 2017, Volume 56, Issue 3, pp. 191 - 210

https://doi.org/10.4467/16890027AP.17.017.7498

Authors

,
Isabelle Koenig
Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
All publications →
,
Florence Schwendener
Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
All publications →
,
Matthieu Mulot
Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland; Station biologique, Adaptation et diversité en milieu marin, Evolution des Protistes et Ecosystèmes Pélagiques, Roscoff, France
All publications →
Edward A. D. Mitchell
Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland; Jardin Botanique de Neuchâtel, Neuchâtel, Switzerland
https://orcid.org/0000-0003-0358-506X Orcid
All publications →

Titles

Response of Sphagnum Testate Amoebae to Drainage, Subsequent Re-wetting and Associated Changes in the Moss Carpet – Results from a Three Year Mesocosm Experiment

Abstract

Sphagnum peatlands represent a globally significant pool and sink of carbon but these functions are threatened by ongoing climate change. Testate amoebae are useful bioindicators of hydrological changes, but little experimental work has been done on the impact of water table changes on communities.
Using a mesocosm experimental setting that was previously used to assess the impact of drought disturbance on communities and ecosystem processes with three contrasted water table positions: wet (–4 cm), intermediate (–15 cm) and dry (–25 cm), we studied the capacity of testate amoeba communities to recover when the water table was kept at –10 cm for all plots. The overall experiment lasted three years. We assessed the taxonomic and functional trait responses of testate amoeba communities. The selected traits were hypothesised to be correlated to moisture content (response traits: shell size, aperture position) or trophic role (effect traits: mixotrophy, aperture size controlling prey range).
During the disturbance phase, the mixotrophic species Hyalosphenia papilio dominated the wet and intermediate plots, while the community shifted to a dominance of “dry indicators” (Corythion dubium, Nebela tincta, Cryptodifflugia oviformis) and corresponding traits (loss of mixotrophy, and dominance of smaller taxa with ventral or ventral-central aperture) in dry plots. During the recovery phase we observed two contrasted trends in the previously wet and intermediate plots: communities remained similar where the Sphagnum carpet remained intact but species and traits indicators of drier conditions increased in plots where it had degraded. In the former dry plots, indicators and traits of wet conditions increased by the end of the experiment.
This is one of the first experiment simulating a disturbance and subsequent recovery in ex-situ mesocosms of Sphagnum peatland focusing on the response of testate amoebae community structure as well as functional traits to water table manipulation. The results generally confirmed that testate amoebae respond within a few months to hydrological changes and thus represent useful bioindicators for assessing current and past hydrological changes in Sphagnum peatlands.
 

References

Download references

Amesbury M. J., Swindles G. T., Bobrov A., Charman D. J., Holden J., Lamentowicz M., Mallon G., Mazei Y., Mitchell E. A. D., Payne R. J., Roland T. P., Turner T. E., Warner B. G. (2016) Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quat. Sci. Rev. 152: 132–151

Anderson M. J. (2001) A new method for non-parametric multivariate analysis of variance: non-parametric manova for ecology. Austral. Ecol. 26: 32–46

Arrieira R. L., Schwind L. T. F., Bonecker C. C., Lansac-Toha F. A. (2015) Use of functional diversity to assess determinant assembly processes of testate amoebae community. Aquat. Ecol. 49: 561–571

de Bello F., Lavorel S., Díaz S., Harrington R., Cornelissen J. H., Bardgett R. D., Berg M. P., Cipriotti P., Feld C. K., Hering D., and others (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19: 2873–2893

Benton T. G., Solan M., Travis J. M. J., Sait S. M. (2007) Microcosm experiments can inform global ecological problems. Trends Ecol. Evol. 22: 516–521

Bobrov A. A., Charman D. J., Warner B. G. (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. Protist 150: 125–36

Bonn A., Allott T., Evans M., Joosten H., Stoneman R. (2016) Peatland restoration and ecosystem services: science, policy and practice. Cambridge University Press

Bonnett S. A., Linsted R., Ross S., Maltby E. (2011) Guidelines for monitoring the success of peatland restoration. Technical Report. Natural England, SWIMMER

Booth R. K. (2001) Ecology of testate amoebae (Protozoa) in two Lake Superior coastal wetlands: Implications for paleoecology and environmental monitoring. Wetlands 21: 564–576

Booth R. K. (2002) Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J. Paleolimnol. 28: 329–348

Booth R. K., Lamentowicz M., Charman D. (2010) Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires Peat 7: 1–7

Booth R. K., Meyers B. (2010) Environmental controls on pore number in Hyalosphenia papilio: implications for paleoenvironmental reconstruction. Acta Protozool49: 29–35

Buttler A., Warner B. G., Grosvernier P., Matthey Y. (1996) Vertical patterns of testate amoebae (protozoa: rhizopoda) and peat-forming vegetation on cutover bogs in the Jura, Switzerland. New Phytol. 134: 371–382

Cangelosi R., Goriely A. (2007) Component retention in principal component analysis with application to cDNA microarray data. Biol. Direct 2: 2

Caron D. A., Worden A. Z., Countway P. D., Demir E., Heidelberg K. B. (2009) Protists are microbes too: a perspective. ISME J. 3: 4–12

Cavalier-Smith T., Chao E. E. Y. (2003) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154: 341–358

Cavender-Bares J., Kozak K. H., Fine P. V. A., Kembel S. W. (2009) The merging of community ecology and phylogenetic biology. Ecol. Lett. 12: 693–715

Charman D. J. (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quat. Sci. Rev. 20: 1753–1764

Charman D. J., Hendon D., Woodland W. A. (2000) The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Technical Guide No. 9. Quaternary Research Association.

Chase J. M., Kraft N. J., Smith K. G., Vellend M., Inouye B. D. (2011) Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2: 1–11

Church A., Fish R., Haines-Young R., Mourato S., Tratalos J., Stapleton L., Willis C., Coates P., Gibbons S., Leyshon C., Potschin M., Ravenscroft N., Sanchis-Guarner R., Winter M., Kenter J. (2014) UK National Ecosystem Assessment Follow-on. Work Package Report 5: Cultural ecosystem services and indicators. UNEP-WCMC, LWEC, UK

Delaine M., Bernard N., Gilbert D., Recourt P., du Châtelet E. A. (2017) Origin and diversity of testate amoebae shell composition: Example of Bullinularia indica living in Sphagnum capillifoliumEur. J. Protistol. 59: 14–25

Dray S., Legendre P. (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400–3412

Fournier B., Lara E., Jassey V. E. J., Mitchell E. A. D. (2015) Functional traits as a new approach for interpreting testate amoeba palaeo-records in peatlands and assessing the causes and consequences of past changes in species composition. The Holocene 25: 1375–1383

Fournier B., Malysheva E., Mazei Y., Moretti M., Mitchell E. A. D. (2012) Toward the use of testate amoeba functional traits as indicator of floodplain restoration success. Eur. J. Soil Biol. 49: 85–91

Gilbert D., Amblard C., Bourdier G., Francez A. J. (1998) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microb. Ecol. 35: 83–93

Gilbert D., Mitchell E. A. D. (2006) Microbial diversity in Sphagnum peatlands. Dev. Earth Surf. Process 9: 287–318

Gilbert D., Mitchell E. A. D., Amblard C., Bourdier G., Francez A. J. (2003) Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozool. 42: 99–104

Gomaa F., Kosakyan A., Heger T. J., Corsaro D., Mitchell E. A. D., Lara E. (2014) One alga to rule them all: unrelated mixotrophic testate amoebae (Amoebozoa, Rhizaria and Stramenopiles) share the same symbiont (Trebouxiophyceae). Protist 165: 161–176

Gomaa F., Mitchell E. A. D., Lara E. (2013) Amphitremida (Poche, 1913) is a new major, ubiquitous Labyrinthulomycete clade. PLoS ONE 8: e53046

Gower J. C. (1971) A general coefficient of similarity and some of its properties. Biometrics 27: 857–871

Graf U., Kuchler M., Ecker K., Feldmeyer-Christe E., Könitzer C., Känzig U., Grosvernier P., Berchten F., Lugon A., David R., Marti F. (2007) Etat et évolution des marais en Suisse. Office Fédéral de l’Environnement, Berne

Grosvernier P., Matthey Y., Buttler A. (1997) Growth potential of three Sphagnum species in relation to water table level and peat properties with implications for their restoration in cut-over bogs. J. Appl. Ecol. 34: 471–483

Heal O. W. (1964) Observations on the seasonal and spatial distribution of testacea (Protozoa: Rhizopoda) in SphagnumJ. Anim. Ecol. 33: 395–412

Heger T. J., Mitchell E. A. D., Leander B. S. (2013) Holarctic phylogeography of the testate amoeba Hyalosphenia papilio (Amoebozoa: Arcellinida) reveals extensive genetic diversity explained more by environment than dispersal limitation. Mol. Ecol. 22: 5172–5184

Heger T. J., Mitchell E. A. D., Ledeganck P., Vincke S., Van de Vij­ver B., Beyens L. (2009) The curse of taxonomic uncertainty in biogeographical studies of free‐living terrestrial protists: a case study of testate amoebae from Amsterdam Island. J. Biogeogr. 36: 1551–1560

Holt R. D. (2009) Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. USA 106: 19659–19665

Jassey V. E. J., Chiapusio G., Mitchell E. A. D., Binet P., Toussaint M.-L., Gilbert D. (2011) Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow fen/bog gradient. Microb. Ecol. 61: 374–385

Jassey V. E. J., Meyer C., Dupuy C., Bernard N., Mitchell E. A. D., Toussaint M.-L., Metian M., Chatelain A. P., Gilbert D. (2013a) To what extent do food preferences explain the trophic position of heterotrophic and mixotrophic microbial consumers in a Sphagnum peatland? Microb. Ecol. 66: 571–580

Jassey V. E. J., Chiapusio G., Binet P., Buttler A., Laggoun-Defarge F., Delarue F., Bernard N., Mitchell E. A. D., Toussaint M. L., Francez A. J., Gilbert D. (2013b) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob. Change Biol. 19: 811–823

Jassey V. E. J., Signarbieux C., Hättenschwiler S., Bragazza L., Buttler A., Delarue F., Fournier B., Gilbert D., Laggoun-Défarge F., Lara E., Mills R. T. E., Mitchell E. A. D., Payne R. J., Robroek B. J. M. (2015) An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Sci. Rep. 5: 16931

Juggins, S. (2015) rioja: Analysis of Quaternary Science Data, R package

Kaiser H. F. (1991) Coefficient Alpha for a Principal Component and the Kaiser-Guttman Rule. Psychol. Rep. 68: 855–858

Kajukało K., Fiałkiewicz-Kozieł B., Gałka M., Kołaczek P., Lamentowicz M. (2016) Abrupt ecological changes in the last 800 years inferred from a mountainous bog using testate amoebae traits and multi-proxy data. Eur. J. Protistol. 55: 165–180

Kearney M., Simpson S. J., Raubenheimer D., Helmuth B. (2010) Modelling the ecological niche from functional traits. Philos. Trans. R. Soc. B. Biol. Sci. 365: 3469–3483

Kembel S. W., Cowan P. D., Helmus M. R., Cornwell W. K., Morlon H., Ackerly D. D., Blomberg S. P., Webb C. O. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464

Koenig I., Mulot M., Mitchell E. A. D. (2018) Taxonomic and functional traits responses of Sphagnum peatland testate amoebae to experimentally manipulated water table. Ecol. Indic.

Kosakyan A., Gomaa F., Mitchell E. A. D., Heger T. J., Lara E. (2013) Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta–collaris–bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae). Eur. J. Protistol. 49: 222–37

Kosakyan A., Lahr D. J. G., Mulot M., Meisterfeld R., Mitchell E. A. D., Lara E. (2016) Phylogenetic reconstruction based on COI reshuffles the taxonomy of Hyalosphenid shelled (testate) amoebae and reveals the convoluted evolution of shell plate shapes. Cladistics32 (6): 606–623

Laggoun-Defarge F., Mitchell E. A. D., Gilbert D., Disnar J.-R., Comont L., Warner B. G., Buttler A. (2008) Cut-over peatland regeneration assessment using organic matter and microbial indicators (bacteria and testate amoebae). J. Appl. Ecol. 45: 716–727

Lahr D. J. G., Bosak T., Lara E., Mitchell E. A. D. (2015) The Phanerozoic diversification of silica-cycling testate amoebae and its possible links to changes in terrestrial ecosystems. PeerJ. 3: e1234

Laliberté E., Legendre P., Shipley, B. (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package

Lamentowicz L., Gabka M., Rusinska A., Sobczynski T., Owsianny P. M., Lamentowicz M. (2011) Testate amoeba (Arcellinida, Euglyphida) ecology along a poor-rich gradient in fens of Western Poland. Int. Rev. Hydrobiol. 96: 356–380

Lamentowicz M., Gałka M., Lamentowicz Ł., Obremska M., Kühl N., Lücke A., Jassey V. E. J. (2015) Reconstructing climate change and ombrotrophic bog development during the last 4000 years in northern Poland using biotic proxies, stable isotopes and trait-based approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 418: 261–277

Lamentowicz Ł., Lamentowicz M., Gabka M. (2008) Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands 28: 164–175

Lamentowicz M., Mitchell E. A. D. (2005) The ecology of testate amoebae (protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microb. Ecol. 50: 48–63

Lara E., Heger T. J., Mitchell E. A. D., Meisterfeld R., Ekelund F. (2007) SSU rRNA reveals a sequential increase in shell complexity among the euglyphid testate amoebae (Rhizaria : Euglyphida). Protist 158: 229–237

Lavorel S., Garnier E. (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16: 545–556

Legendre P., Gallagher E. D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280

Lizoňová Z., Horsák M. (2017) Contrasting diversity of testate amoebae communities in Sphagnum and brown-moss dominated patches in relation to shell counts. Eur. J. Protistol. 58: 135–142

MacArthur R. H. (1957) On the relative abundance of bird species. Proc. Natl. Acad. Sci. 43: 293–295

Makarieva A. M., Gorshkov V. G., Li B.-L., Chown S. L., Reich P. B., Gavrilov V. M. (2008) Mean mass-specific metabolic rates are strikingly similar across life’s major domains: evidence for life’s metabolic optimum. Proc. Natl. Acad. Sci. 105: 16994–16999

Marcisz K., Colombaroli D., Jassey V. E. J., Tinner W., Kołaczek P., Gałka M., Karpińska-Kołaczek M., Słowiński M., Lamentowicz M. (2016) A novel testate amoebae trait-based approach to infer environmental disturbance in Sphagnum peatlands. Sci. Rep. 6

Marcisz K., Lamentowicz Ł., Słowińska S., Słowiński M., Muszak W., Lamentowicz M. (2014) Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur. J. Protistol. 50: 445–455

Mason N. W., Lanoiselée C., Mouillot D., Wilson J. B., Argillier C. (2008) Does niche overlap control relative abundance in French lacustrine fish communities? A new method incorporating functional traits. J. Anim. Ecol. 77: 661–669

Mazei Y. A., Tsyganov A. N., Bubnova O. A. (2009) The species composition and community structure of testate amoebae in Sphagnum bogs of northern Karelia (The White Sea Lowland). Zool. Zhurnal. 88: 771–782

Messier J., McGill B. J., Lechowicz M. J. (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13: 838–848

Millenium Ecosystem Assessment, MEA (2005) Ecosystems and human well-being. The Island Press, Washington D.C.

Mitchell E. A. D. (2003) The identification of Nebela and similar species with indications on their ecology and distribution. Univ. Anchorage Alsk

Mitchell E. A. D., Buttler A. J., Warner B. G., Gobat J.-M. (1999) Ecology of testate amoebae (Protozoa : Rhizopoda) in Sphagnum peatlands in the Jura Mountains, Switzerland and France. Ecoscience 6: 565–576

Mitchell E. A. D., Charman D. J. G., Warner B. G. (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers. Conserv. 17: 2115–2137

Mitchell E. A. D., Lamentowicz M., Payne R. J., Mazei Y. (2014) Effect of taxonomic resolution on ecological and palaeoecological inference – a test using testate amoeba water table depth transfer functions. Quat. Sci. Rev. 91: 62–69

Mlambo M. C. (2014) Not all traits are ‘functional’: insights from taxonomy and biodiversity-ecosystem functioning research. Biodivers. Conserv23: 781–790

Mouillot D., Dumay O., Tomasini J. A. (2007) Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuar. Coast. Shelf. Sci. 71: 443–456

Mulot M., Marcisz K., Grandgirard L., Lara E., Kosakyan A., Robroek B. J., Lamentowicz M., Payne R. J., Mitchell E. A. D. (2017) Genetic determinism vs. phenotypic plasticity in protist morphology. J. Eukaryot. Microbiol.

Mulot M., Varidel, D., Mitchell, E. A. D. (2015) A mesocosm approach to study the response of Sphagnum peatlands to hydrological changes: setup, optimisation and performance. Mires Peat 16: 1–12

Niemi G. J., McDonald M. E. (2004) Application of ecological indicators. Annu. Rev. Ecol. Evol. Syst. 35: 89–111

Norris K., Bailey M., Keith A., Maskell L., Reading C., Turner S., Vanbergen A., Watt A., and others (2011) Biodiversity in the context of ecosystem services. Chapter 4 in: Technical Report. UK National Ecosystem Assessment, 63–103

Ogden G. G., Hedley R. H. (1980) An atlas of freshwater testate amoebae. Soil Sci. 130: 176

Oksanen J. (2015) Vegan: an introduction to ordination. R package.

Oliverio A. M., Lahr D. J. G., Nguyen T., Katz L. A. (2014) Cryptic diversity within morphospecies of testate amoebae (Amoebozoa: Arcellinida) in New England bogs and fens. Protist 165: 196–207

Opravilova V., Hajek M. (2006) The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: A case study from the Western Carpathians. Acta Protozool45: 191–204

Payne R. J. (2013) Seven reasons why protists make useful bioindicators. Acta Protozool. 52: 105

Payne R. J., Charman D. J., Matthews S., Eastwood W. J. (2008) Testate amoebae as palaeohydrological proxies in Surmene Agacbasi Yaylasi peatland (Northeast Turkey). Wetlands 28: 311–323

Payne R. J., Creevy A., Malysheva E., Ratcliffe J., Andersen R., Tsyganov A. N., Rowson J. G., Marcisz K., Zielińska M., Lamentowicz M., Lapshina E. D., Mazei Y. (2016) Tree encroachment may lead to functionally-significant changes in peatland testate amoeba communities. Soil Biol. Biochem. 98: 18–21

Pinto R., de Jonge V. N., Marques J. C. (2014) Linking biodiversity indicators, ecosystem functioning, provision of services and human well-being in estuarine systems: Application of a conceptual framework. Ecol. Indic. 36: 644–655

Podani J. (1999) Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 331–340

Qin Y., Mitchell E. A. D., Lamentowicz M., Payne R. J., Lara E., Gu Y., Huang X., Wang H. (2013) Ecology of testate amoebae in peatlands of central China and development of a transfer function for paleohydrological reconstruction. J. Paleolimnol. 50: 319–330

R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

Ricotta C., Moretti M. (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167: 181–188

Schwind L. T. F., Arrieira R. L., Bonecker C. C., Lansa-Tôha F. A., Amodêo F. (2016) Chlorophyll-a and suspended inorganic material affecting the shell traits of testate amoebae community. Acta Protozool. 55 (3): 145–154

Singer D., Kosakyan A., Pillonel A., Mitchell E. A. D., Lara E. (2015) Eight species in the Nebela collaris complex: Nebela gimlii (Arcellinida, Hyalospheniidae), a new species described from a Swiss raised bog. Eur. J. Protistol. 51: 79–85

Tsyganov A. N., Aerts R., Nijs I., Cornelissen J. H. C., Beyens L. (2012) Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: The results of eight-year field climate manipulations. Protist 163: 400–414

Turner T. E., Swindles G. T., Charman D. J., Blundell A. (2013) Comparing regional and supra-regional transfer functions for palaeohydrological reconstruction from Holocene peatlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369: 395–408

Villéger S., Mason N. W., Mouillot D. (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301

Violle C., Navas M.-L., Vile D., Kazakou E., Fortunel C., Hummel I., Garnier E. (2007) Let the concept of trait be functional! Oikos 116: 882–892

Webb C. O., Losos J. B., Agrawal A. A. (2006) Integrating phylogenies into community ecology. Ecology 87: S1–S2

Wilkinson D. M., Mitchell E. A. D. (2010) Testate amoebae and nutrient cycling with particular reference to soils. Geomicrobiol. J. 27: 520–533

Information

Information: Acta Protozoologica, 2017, Volume 56, Issue 3, pp. 191 - 210

Article type: Original article

Authors

Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland

Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland

Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland; Station biologique, Adaptation et diversité en milieu marin, Evolution des Protistes et Ecosystèmes Pélagiques, Roscoff, France

https://orcid.org/0000-0003-0358-506X

Edward A. D. Mitchell
Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland; Jardin Botanique de Neuchâtel, Neuchâtel, Switzerland
https://orcid.org/0000-0003-0358-506X Orcid
All publications →

Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland; Jardin Botanique de Neuchâtel, Neuchâtel, Switzerland

Published at: 13.12.2017

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Isabelle Koenig (Author) - 25%
Florence Schwendener (Author) - 25%
Matthieu Mulot (Author) - 25%
Edward A. D. Mitchell (Author) - 25%

Article corrections:

-

Publication languages:

English